
Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 1

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 2

Profitable Bitcoin Trading Strategies: Trend, Mean
Reversion & Hybrid Models
꺠꺡꺢 Take the Next Step: Get the Complete Python Code Package!

You’ve just unlocked a treasure trove of powerful Bitcoin trading strategies. But reading
about them is only the beginning.

To transform this knowledge into real-world action, we've created a fully coded
implementation of every strategy in this guide—ready for backtesting, customization, and
deployment.

귑귒귓귔귕귖 The “Profitable Bitcoin Strategies” Python Code Package Includes:

 脥� All strategies from the book — fully implemented in modular, well-commented
Python classes

 굇굃굈굉굊 Backtest-ready — easily integrated with Backtrader or your own frameworks

 脥깢깣 Rolling backtests — analyze strategy consistency across different market
conditions

 Customizable Parameters — every strategy has configurable params and
clearly structured next() logic

 ��� Advanced & Hybrid Models — includes Random Forest and Rough Path
strategies for cutting-edge insights

 뜜뜝뜡뜢뜞뜟뜠 Save countless hours — go from theory to live testing without writing the base
code yourself

Whether you're a trader, researcher, or developer, this premium package is your shortcut
to building, testing, and deploying Bitcoin strategies that consistently outperform buy-and-
hold benchmarks.

蓁蓂蓃蓄 Bonus: All code is optimized for BTC-USD and tested across multiple timeframes.

跚跛跜距 Ready to unlock the full code base and accelerate your trading journey?

虌虇虈虉虊虋 Get the Profitable Bitcoin Strategies Code Package now and start building your
edge.

곸곹곺곻과곽 Visit Profitable Bitcoin Strategies to purchase.

https://www.pyquantlab.com/downloads/Profitable%20Bitcoin%20Strategies.html

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 3

Table of Contents

Table of Contents .. 3

1. Introduction to Algorithmic Trading ... 5

What is Algorithmic Trading? ... 5

The Role of Backtesting .. 5

Key Performance Indicators in Backtesting .. 7

2. Trend-Following Strategies ... 9

Donchian Breakout Strategy ... 9

Heikin Ashi Trend Strategy .. 14

Ichimoku Cloud Strategy .. 17

Keltner Channel Breakout Strategy .. 20

MA Ribbon Pullback Strategy .. 24

PSAR Trend Filter Strategy .. 28

Regime Filtered Trend Strategy .. 31

SuperTrend Confirmation Strategy .. 36

VIDYA Strategy ... 40

Vortex Trend Capture Strategy .. 45

ZLEMA Crossover Strategy .. 50

3. Mean-Reversion Strategies ... 54

MA Bounce Strategy ... 54

Ornstein-Uhlenbeck (OU) Mean Reversion Strategy .. 57

Pivot Point Strategy .. 62

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 4

Quantile Channel Strategy .. 67

VWAP Anchored Breakout Strategy .. 72

4. Volatility Compression / Breakout Strategies ... 78

Bollinger Band Squeeze Strategy ... 78

Momentum Ignition Strategy ... 81

Simple Volatility Momentum Strategy .. 86

Statistically Validated Regression Channel Breakout Strategy 90

5. Advanced and Hybrid Strategies ... 97

Kalman Filter Trend Strategy ... 97

OBV Momentum Strategy ... 100

RandomForest-Enhanced MA Ribbon Strategy ... 103

Rough Path Momentum Strategy ... 108

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 5

1. Introduction to Algorithmic Trading

What is Algorithmic Trading?

Algorithmic trading, often shortened to algo-trading, involves using computer programs to
execute trades automatically based on predefined sets of rules or algorithms. These
algorithms can consider various factors such as timing, price, quantity, and other market
conditions. The primary benefits include speed, accuracy, and the ability to backtest
strategies against historical data to assess their potential profitability and risks.

The Role of Backtesting

Backtesting is the process of testing a trading strategy using historical data to determine
its hypothetical performance. It’s a crucial step in the development of any algorithmic
trading strategy, allowing traders to evaluate the viability and profitability of a strategy
before risking real capital. A robust backtest can reveal how a strategy would have
performed under various market conditions, helping to identify potential weaknesses and
areas for optimization.

A particularly robust form of backtesting is rolling backtesting. Instead of testing a
strategy once over a single, long historical period, rolling backtesting divides the entire
historical dataset into multiple, consecutive, or overlapping “windows” (e.g., 3-month, 6-
month, or 1-year periods). The strategy is then run independently on each window. This
approach provides a more realistic assessment of a strategy’s performance across various
market cycles and conditions, helping to identify consistency and adaptability. It also
helps to mitigate the risk of “overfitting” a strategy to a single historical period.

The following Python function, run_rolling_backtest, demonstrates how such a rolling
backtest can be implemented using the backtrader library and yfinance for data:

def run_rolling_backtest(
 ticker,
 start,
 end,
 window_months,
 strategy_params=None
):
 strategy_params = strategy_params or {}
 all_results = []
 start_dt = pd.to_datetime(start)
 end_dt = pd.to_datetime(end)
 current_start = start_dt

 while True:
 current_end = current_start + rd.relativedelta(months=window_months)
 if current_end > end_dt:
 break

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 6

 print(f"\nROLLING BACKTEST: {current_start.date()} to
{current_end.date()}")

 # Fetch data using yfinance
 data = yf.download(ticker, start=current_start, end=current_end,
auto_adjust=False, progress=False)

 if data.empty or len(data) < 90:
 print("Not enough data for this period.")
 current_start += rd.relativedelta(months=window_months)
 continue

 if isinstance(data.columns, pd.MultiIndex):
 data = data.droplevel(1, 1)

 # Calculate Buy & Hold return for the period
 start_price = data['Close'].iloc[0]
 end_price = data['Close'].iloc[-1]
 benchmark_ret = (end_price - start_price) / start_price * 100

 feed = bt.feeds.PandasData(dataname=data)
 cerebro = bt.Cerebro()

 cerebro.addstrategy(strategy_class, **strategy_params)
 cerebro.adddata(feed)
 cerebro.broker.setcash(100000)
 cerebro.broker.setcommission(commission=0.001)
 cerebro.addsizer(bt.sizers.PercentSizer, percents=95)

 start_val = cerebro.broker.getvalue()
 cerebro.run()
 final_val = cerebro.broker.getvalue()
 strategy_ret = (final_val - start_val) / start_val * 100

 all_results.append({
 'start': current_start.date(),
 'end': current_end.date(),
 'return_pct': strategy_ret,
 'benchmark_pct': benchmark_ret, # Add benchmark return
 'final_value': final_val,
 })

 print(f"Strategy Return: {strategy_ret:.2f}% | Buy & Hold Return:
{benchmark_ret:.2f}%")
 current_start += rd.relativedelta(months=window_months)

 return pd.DataFrame(all_results)

Explanation of run_rolling_backtest function:

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 7

 Parameters:
o ticker: The financial instrument symbol (e.g., ‘BTC-USD’).
o start, end: The overall historical period for the rolling backtest.
o window_months: The duration of each individual rolling window in months.
o strategy_params: A dictionary of parameters to pass to the backtrader

strategy.
 Iteration: The function iterates through the overall start to end period, creating

window_months-long segments.
 Data Fetching: For each window, it uses yf.download to fetch historical data for

the specified ticker. It also handles multi-level columns by dropping the second
level.

 Benchmark Calculation: It calculates the simple Buy & Hold return for each
individual window to serve as a benchmark for comparison against the strategy’s
performance within that same window.

 Backtrader Setup: A backtrader.Cerebro instance is created for each window. The
specified strategy (strategy_class) is added, along with the fetched data, initial
cash, commission, and position sizer.

 Execution: cerebro.run() executes the backtest for the current window.
 Results Storage: The strategy_ret (strategy’s return) and benchmark_ret (Buy &

Hold return) for each window are stored in all_results, along with the start and
end dates of the window and the final portfolio value.

 Output: The function prints the strategy and Buy & Hold returns for each window
and finally returns a pandas.DataFrame containing all the aggregated results.

Key Performance Indicators in Backtesting

When evaluating a strategy through backtesting, several Key Performance Indicators
(KPIs) are commonly used:

 Total Return: The overall percentage gain or loss over the backtesting period.
 Annualized Return: The average return earned by an investment over a year, often

used to compare strategies with different timeframes.
 Sharpe Ratio: Measures risk-adjusted return. A higher Sharpe Ratio indicates better

performance for the amount of risk taken. It calculates the excess return per unit of
standard deviation of returns.

Sharpe Ratio =
𝑅 − 𝑅

𝜎

 Where 𝑅 is the portfolio return, 𝑅 is the risk-free rate, and 𝜎 is the standard
deviation of the portfolio’s excess return.

 Max Drawdown: The largest peak-to-trough decline in the portfolio’s value during
the backtesting period. It indicates the maximum loss an investor would have
faced.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 8

 Win Rate: The percentage of winning trades out of the total number of trades.
 Profit Factor: The ratio of gross winning trades to gross losing trades. A profit factor

greater than 1 indicates a profitable strategy.

Profit Factor =
Gross Profit
Gross Loss

 Total Trades: The total number of buy and sell operations executed during the
backtest.

 Average Win/Loss: The average profit from winning trades and the average loss
from losing trades.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 9

2. Trend-Following Strategies

Trend-following strategies aim to profit by analyzing the momentum of an asset’s price to
determine its prevailing direction. The core idea is that once a trend is established, it is
more likely to continue than to reverse. These strategies typically involve entering a trade
after a trend has been identified and exiting when the trend shows signs of reversal or
weakening.

Donchian Breakout Strategy
 Logic and Idea: This strategy is a classic trend-following approach based on

Donchian Channels. It aims to capture trends by entering a trade when the price
breaks out of the highest high or lowest low over a specified period. The strategy
incorporates additional filters like a Moving Average (MA) for higher-timeframe trend
confirmation. Trailing stops based on Average True Range (ATR) are used for risk
management.

 Main Parts of the Strategy Class Code (DonchianBreakoutStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('donchian_period', 20), # Donchian channel period
 ('adx_period', 14), # ADX period (not fully utilized
in this specific next method snippet, but defined)
 ('adx_threshold', 25), # ADX threshold for trend
strength (not fully utilized)
 ('roc_period', 14), # Rate of Change period (not
fully utilized)
 ('roc_threshold', 2.0), # ROC threshold (2% minimum
momentum) (not fully utilized)
 ('ma_period', 50), # Moving average for higher
timeframe trend
 ('atr_period', 14), # ATR period for trailing stops
 ('atr_multiplier', 2.0), # ATR multiplier for trailing
stops
 ('printlog', True),
)

 donchian_period: The number of bars used to calculate the highest
high and lowest low that define the Donchian Channel.

 ma_period: The period for the Simple Moving Average (SMA), used as a
filter to confirm the broader trend direction.

 atr_period: The period for calculating the Average True Range (ATR),
which is a measure of volatility used to set the trailing stop distance.

 atr_multiplier: A multiplier applied to the ATR value to determine
the actual distance of the trailing stop.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 10

 printlog: A boolean flag to control whether logging messages are
printed.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Skip if order is pending
 if self.order:
 return

 # Handle trailing stops for existing positions
 if self.position:
 if not self.trail_order:
 if self.position.size > 0:
 self.log(f"Placing ATR trailing stop for long
position")
 self.trail_order = self.sell(
 exectype=bt.Order.StopTrail,
 trailamount=self.atr[0] *
self.params.atr_multiplier)
 elif self.position.size < 0:
 self.log(f"Placing ATR trailing stop for short
position")
 self.trail_order = self.buy(
 exectype=bt.Order.StopTrail,
 trailamount=self.atr[0] *
self.params.atr_multiplier)
 return

 # Ensure sufficient data
 if len(self) < max(self.params.donchian_period,
self.params.ma_period):
 return

 # Donchian Channel breakout signals (SIMPLIFIED)
 long_breakout = self.datahigh[0] > self.donchian_high[-1]
 short_breakout = self.datalow[0] < self.donchian_low[-1]

 # Just basic trend direction - no other filters!
 trend_up = self.dataclose[0] > self.ma[0]
 trend_down = self.dataclose[0] < self.ma[0]

 # SIMPLE entry conditions
 long_signal = long_breakout and trend_up
 short_signal = short_breakout and trend_down

 if long_signal:
 self.log(f"LONG breakout signal at

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 11

{self.dataclose[0]:.2f}")
 self.log(f"High: {self.datahigh[0]:.2f} > Donchian:
{self.donchian_high[-1]:.2f}")

 self.cancel_trail()
 if self.position and self.position.size < 0:
 self.order = self.buy() # Close short and go long
 elif not self.position:
 self.order = self.buy()

 elif short_signal:
 self.log(f"SHORT breakout signal at
{self.dataclose[0]:.2f}")
 self.log(f"Low: {self.datalow[0]:.2f} < Donchian:
{self.donchian_low[-1]:.2f}")

 self.cancel_trail()
 if self.position and self.position.size > 0:
 self.order = self.sell() # Close long and go short
 elif not self.position:
 self.order = self.sell()

 Order Check and Trailing Stop Management: The method first
checks for any pending orders (self.order). If the strategy is
currently in a position and a trailing stop order (self.trail_order)
hasn’t been placed yet, it creates one using bt.Order.StopTrail,
with the trailamount based on the current ATR and atr_multiplier.

 Data Sufficiency: Ensures there is enough historical data for all
indicators to be calculated accurately.

 Breakout Signals:
 long_breakout: True if the current bar’s high

(self.datahigh[0]) is greater than the highest high recorded
over the donchian_period from the previous bar
(self.donchian_high[-1]).

 short_breakout: True if the current bar’s low
(self.datalow[0]) is less than the lowest low recorded over
the donchian_period from the previous bar
(self.donchian_low[-1]).

 Trend Filter: trend_up is true if the current closing price
(self.dataclose[0]) is above the Simple Moving Average
(self.ma[0]), indicating an uptrend. trend_down is true if below,
indicating a downtrend.

 Entry Conditions:
 long_signal: A buy signal is generated if both long_breakout

and trend_up are true.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 12

 short_signal: A sell signal is generated if both
short_breakout and trend_down are true.

 Trade Execution: If a long_signal or short_signal is active:
 Any existing trailing stop is immediately canceled

(self.cancel_trail()) to prevent interference with the new
entry.

 If the strategy is currently in an opposing position (e.g., short
when a long signal appears), it first closes that position.

 Finally, the new buy() or sell() order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 13

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 14

Heikin Ashi Trend Strategy
 Logic and Idea: This strategy leverages Heikin-Ashi candles, which smooth out

price data and make trends easier to identify compared to traditional candlesticks.
The core idea is to enter a trade when a strong trend is confirmed by a sequence of
specific Heikin-Ashi candles (e.g., consecutive green candles with no lower wick for
an uptrend). A trailing stop-loss is used for risk management, allowing profits to
run while limiting downside.

 Main Parts of the Strategy Class Code (HeikinAshiTrendStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('consecutive_candles', 3), # Number of strong HA candles
needed for entry
 ('trail_percent', 0.02), # Trailing stop
)

 consecutive_candles: The minimum number of consecutive Heikin-
Ashi candles that must show a strong trend confirmation (e.g., strong
green for long, strong red for short) before an entry signal is
generated.

 trail_percent: The percentage used for the trailing stop-loss order,
set once a position is opened.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Make sure we have enough bars to check the sequence
 if len(self) < self.p.consecutive_candles:
 return

 if self.order:
 return

 # --- Entry Logic ---
 if not self.position:
 # --- Check for a BUY Signal ---
 is_buy_signal = True
 # Loop backwards from the current candle (i=0) to check
the sequence
 for i in range(self.p.consecutive_candles):
 # CORRECTED: Perform the check on the historical data
inside the loop
 is_green_past = self.ha.ha_close[-i] >
self.ha.ha_open[-i]
 has_no_lower_wick_past = self.ha.ha_open[-i] ==

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 15

self.ha.ha_low[-i]

 if not (is_green_past and has_no_lower_wick_past):
 is_buy_signal = False
 break # If one candle fails, the sequence is
broken

 if is_buy_signal:
 self.order = self.buy()
 return # Exit to avoid checking for a sell signal on
the same bar

 # --- Check for a SELL Signal ---
 is_sell_signal = True
 # Loop backwards to check the sequence
 for i in range(self.p.consecutive_candles):
 # CORRECTED: Perform the check on the historical data
inside the loop
 is_red_past = self.ha.ha_close[-i] <
self.ha.ha_open[-i]
 has_no_upper_wick_past = self.ha.ha_open[-i] ==
self.ha.ha_high[-i]

 if not (is_red_past and has_no_upper_wick_past):
 is_sell_signal = False
 break # If one candle fails, the sequence is
broken

 if is_sell_signal:
 self.order = self.sell()

 Data Sufficiency and Order Check: The method first checks if there
are enough historical bars available to evaluate the
consecutive_candles sequence and ensures no orders are currently
pending.

 Buy Signal Logic (is_buy_signal): If the strategy is not currently in a
position, it attempts to detect a buy signal. It loops backward through
the last consecutive_candles. For each candle, it checks if it’s a
“strong green” Heikin-Ashi candle (where ha_close is greater than
ha_open and ha_open is equal to ha_low, indicating a strong bullish
candle with no lower wick). If all candles in the sequence meet these
criteria, is_buy_signal remains True, and a buy() order is placed.

 Sell Signal Logic (is_sell_signal): Similarly, if not in a position, it
checks for a sequence of “strong red” Heikin-Ashi candles (where
ha_close is less than ha_open and ha_open is equal to ha_high,
indicating a strong bearish candle with no upper wick). If all candles
in the sequence confirm this pattern, a sell() order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 16

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 17

Ichimoku Cloud Strategy
 Logic and Idea: The Ichimoku Kinko Hyo (Ichimoku Cloud) is a comprehensive

indicator that provides insights into trend direction, momentum, support, and
resistance levels. This strategy focuses on confirmed breakouts from the “Kumo”
(cloud), validated by the Tenkan-sen/Kijun-sen cross (momentum) and the Chikou
Span (lagging span, for trend confirmation). The idea is to enter only when multiple
components of the Ichimoku system align to confirm a strong trend. A trailing stop
is used for risk management.

 Main Parts of the Strategy Class Code (IchimokuCloudStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # Default Ichimoku parameters
 ('tenkan', 7),
 ('kijun', 14),
 ('senkou', 30),
 ('senkou_lead', 14), # How far forward to plot the cloud
 ('chikou', 14), # How far back to plot the lagging span
 # Strategy parameters
 ('trail_percent', 0.02), # Trailing stop loss of 4%
)

 tenkan: Period for the Tenkan-sen (conversion line).
 kijun: Period for the Kijun-sen (base line).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 18

 senkou: Period for the Senkou Span B (leading span B).
 senkou_lead: How many periods to project the Kumo cloud forward.
 chikou: How many periods to shift the Chikou Span (lagging span)

backward.
 trail_percent: The percentage for the trailing stop-loss order.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Check for pending orders
 if self.order:
 return

 # Check if we are in a position
 if not self.position:
 # --- Bullish Entry Conditions ---
 # 1. Price is above both lines of the Kumo cloud
 is_above_cloud = (self.data.close[0] >
self.ichimoku.senkou_span_a[0] and
 self.data.close[0] >
self.ichimoku.senkou_span_b[0])

 # 2. Tenkan-sen is above Kijun-sen
 is_tk_cross_bullish = self.ichimoku.tenkan_sen[0] >
self.ichimoku.kijun_sen[0]

 # 3. Chikou Span is above the price from 26 periods ago
 is_chikou_bullish = self.ichimoku.chikou_span[0] >
self.data.high[-self.p.chikou]

 if is_above_cloud and is_tk_cross_bullish and
is_chikou_bullish:
 self.order = self.buy()

 # --- Bearish Entry Conditions ---
 # 1. Price is below both lines of the Kumo cloud
 is_below_cloud = (self.data.close[0] <
self.ichimoku.senkou_span_a[0] and
 self.data.close[0] <
self.ichimoku.senkou_span_b[0])

 # 2. Tenkan-sen is below Kijun-sen
 is_tk_cross_bearish = self.ichimoku.tenkan_sen[0] <
self.ichimoku.kijun_sen[0]

 # 3. Chikou Span is below the price from 26 periods ago
 is_chikou_bearish = self.ichimoku.chikou_span[0] <

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 19

self.data.low[-self.p.chikou]

 if is_below_cloud and is_tk_cross_bearish and
is_chikou_bearish:
 self.order = self.sell()

 Order Check: Ensures no orders are pending (self.order).
 Bullish Entry Conditions: If not currently in a position, the strategy

checks for a strong bullish signal from the Ichimoku Cloud by verifying
three conditions:

1. is_above_cloud: The current closing price is above both the
Senkou Span A and Senkou Span B lines (meaning price is
above the “cloud” formation).

2. is_tk_cross_bullish: The Tenkan-sen (fast line) is above the
Kijun-sen (slow line), indicating bullish momentum.

3. is_chikou_bullish: The Chikou Span (lagging span) is above
the price of chikou periods ago, confirming the trend. If all
three conditions are met, a buy() order is placed.

 Bearish Entry Conditions: Similarly, it checks for a strong bearish
signal:

1. is_below_cloud: The current closing price is below both
Senkou Span A and Senkou Span B.

2. is_tk_cross_bearish: The Tenkan-sen is below the Kijun-sen.
3. is_chikou_bearish: The Chikou Span is below the price of

chikou periods ago. If all three conditions are met, a sell()
order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 20

Keltner Channel Breakout Strategy
 Logic and Idea: This strategy aims to capture trends by trading breakouts from

Keltner Channels. Keltner Channels are volatility-based envelopes around a
moving average, using Average True Range (ATR) to define their width. The idea is
that a strong price move that breaks out of these channels indicates the start of a

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 21

new trend. Trades are exited when the price crosses back over the channel’s
centerline (EMA).

 Main Parts of the Strategy Class Code (KeltnerBreakoutStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('ema_period', 30),
 ('atr_period', 7),
 ('atr_multiplier', 1.0),
 ('printlog', True),
)

 ema_period: The period for the Exponential Moving Average (EMA)
used as the centerline of the Keltner Channel.

 atr_period: The period for calculating the Average True Range (ATR),
which measures volatility and is used to set the width of the channel
bands.

 atr_multiplier: A multiplier applied to the ATR value to determine
the distance of the upper and lower bands from the centerline.

 printlog: A boolean flag to enable or disable detailed logging during
the backtest.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Skip if we don't have enough data
 if len(self.data) < max(self.params.ema_period,
self.params.atr_period):
 return

 # Check if we have a pending order
 if self.order:
 return

 # Get previous day's values for signal generation
 if len(self.data) < 2:
 return

 prev_close = self.dataclose[-1]
 prev_upper = self.keltner.top[-1]
 prev_lower = self.keltner.bot[-1]
 current_ema = self.keltner.mid[0]
 current_close = self.dataclose[0]

 if not self.position: # Not in market
 # Long entry: Previous close > Previous upper band

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 22

 if prev_close > prev_upper:
 self.log(f'BUY CREATE: Price {self.dataopen[0]:.2f}
(Prev Close: {prev_close:.2f} > Upper: {prev_upper:.2f})')
 self.order = self.buy()

 # Short entry: Previous close < Previous lower band
 elif prev_close < prev_lower:
 self.log(f'SELL CREATE: Price {self.dataopen[0]:.2f}
(Prev Close: {prev_close:.2f} < Lower: {prev_lower:.2f})')
 self.order = self.sell()

 else: # In market
 # Exit conditions based on current close vs EMA
 if self.position.size > 0: # Long position
 if current_close < current_ema:
 self.log(f'CLOSE LONG: Price {current_close:.2f}
< EMA {current_ema:.2f}')
 self.order = self.close()

 elif self.position.size < 0: # Short position
 if current_close > current_ema:
 self.log(f'CLOSE SHORT: Price {current_close:.2f}
> EMA {current_ema:.2f}')
 self.order = self.close()

 Data Sufficiency and Order Check: The method first checks if
there’s enough historical data for the indicators and if any orders are
pending. It also specifically checks for at least 2 bars to access [-1]
(previous bar’s data).

 Value Retrieval: It retrieves the previous day’s closing price
(prev_close), upper Keltner band (prev_upper), and lower Keltner
band (prev_lower). It also gets the current bar’s EMA midline
(current_ema) and closing price (current_close).

 Entry Logic (if no position):
 Long Entry: If the prev_close was greater than the prev_upper

band, signifying a strong bullish breakout on the previous bar,
a buy() order is placed.

 Short Entry: If the prev_close was less than the prev_lower
band, indicating a strong bearish breakout, a sell() order is
placed.

 Exit Logic (if in position):
 Long Exit: If currently in a long position, and the

current_close falls below the current_ema (Keltner midline),
the position is closed. This acts as a mean-reversion exit if the
trend reverses back towards the average.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 23

 Short Exit: If in a short position, and the current_close rises
above the current_ema, the position is closed for the same
reason.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 24

MA Ribbon Pullback Strategy
 Logic and Idea: This strategy is a sophisticated trend-following approach that uses

a “ribbon” of multiple Exponential Moving Averages (EMAs) to identify strong
trends. The core idea is to enter a trade when the price “pulls back” to the fast end
of an expanding MA ribbon in the direction of the trend. The expansion of the
ribbon (faster EMAs fanning out above slower EMAs) and the positive slope of the
slowest EMA confirm the trend strength. An EMA crossover of separate, faster and
slower EMAs is used as an exit signal.

 Main Parts of the Strategy Class Code (MaRibbonPullbackStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # Define the periods for the ribbon EMAs
 ('ema_periods', (5, 8, 11, 14, 17, 20)),
 ('slope_period', 7), # Period to calculate slope of the
slowest EMA
 ('exit_ema_cross_short', 7), # Faster EMA for exit crossover
 ('exit_ema_cross_long', 30), # Slower EMA for exit crossover
 ('order_percentage', 0.95),
 ('ticker', 'BTC-USD'),
 ('min_slope_threshold', 0.01) # Minimum upward slope for
slowest EMA to consider trend 'up'
 # Adjust based on asset
volatility and timeframe
)

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 25

 ema_periods: A tuple of integers defining the periods for the
Exponential Moving Averages that constitute the “ribbon.” These are
typically increasing periods to show the fanning out of the trend.

 slope_period: The period over which the slope of the slowest EMA is
calculated. A positive slope indicates an uptrend.

 exit_ema_cross_short, exit_ema_cross_long: Periods for two
distinct EMAs used for an exit crossover signal.

 order_percentage: The percentage of available capital to allocate to
a trade.

 min_slope_threshold: The minimum positive value the slowest
EMA’s slope must exceed to confirm a strong upward trend. This
filters out weak or sideways trends.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Check if indicators have enough data
 if len(self.data_close) < max(self.params.ema_periods) +
self.params.slope_period:
 return

 # Define expansion state (simplified)
 # 1. Fastest EMA is above slowest EMA
 # 2. Slowest EMA slope is positive and above threshold
 is_expanding_up = (self.ema_fastest[0] > self.ema_slowest[0]
and
 self.slowest_ema_slope[0] >
self.params.min_slope_threshold)

 # Check for pullback touch (using low price)
 # Price low touches or goes slightly below the fastest EMA
 pullback_touch = self.data_low[0] <= self.ema_fastest[0]

 # --- Entry Logic ---
 if not self.position:
 if is_expanding_up and pullback_touch:
 self.log(f'BUY SIGNAL (Pullback):
Close={self.data_close[0]:.2f}, Low={self.data_low[0]:.2f},
FastEMA={self.ema_fastest[0]:.2f},
Slope={self.slowest_ema_slope[0]:.3f}, Current
ATR={self.atr[0]:.2f}') # Added ATR
 cash = self.broker.get_cash()
 size = (cash * self.params.order_percentage) /
self.data_close[0]
 self.log(f'Calculating Buy Size: Cash={cash:.2f},
Close={self.data_close[0]:.2f},
Percentage={self.params.order_percentage}, Size={size:.6f}')

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 26

 self.order = self.buy(size=size)
 # (Optional: Add short entry logic for downward expansion
and pullback to resistance)

 # --- Exit Logic ---
 else: # We are in a long position
 # Exit if the faster exit EMA crosses below the slower
exit EMA
 if self.exit_crossover < 0:
 self.log(f'SELL SIGNAL (Exit - EMA Cross):
Close={self.data_close[0]:.2f}')
 self.order = self.close()

 Data Sufficiency: Ensures that enough historical data points are
available for all moving averages and slope calculations to be valid.

 Trend Expansion Check (is_expanding_up): This condition confirms
a strong upward trend. It checks two criteria:

1. The fastest EMA (self.ema_fastest[0]) is currently above the
slowest EMA (self.ema_slowest[0]), indicating that the
ribbon is fanning out upwards.

2. The slope of the slowest EMA (self.slowest_ema_slope[0]) is
positive and exceeds the min_slope_threshold, confirming a
sustained upward momentum.

 Pullback Detection (pullback_touch): This condition identifies a
temporary dip in price during an uptrend. It checks if the current bar’s
low price (self.data_low[0]) is less than or equal to the fastest EMA
(self.ema_fastest[0]). This signifies that price has pulled back to a
short-term support level (the fastest EMA).

 Entry Logic: If the strategy is not currently in a position (not
self.position), and both is_expanding_up and pullback_touch are
true, a buy() order is placed. The trade size is calculated based on a
percentage of the available cash.

 Exit Logic: If the strategy is currently in a long position (else: block),
it looks for an exit signal. If the exit_crossover indicator shows a
bearish cross (the faster exit EMA crosses below the slower exit EMA,
indicated by a value less than 0), the current long position is closed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 27

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 28

PSAR Trend Filter Strategy
 Logic and Idea: This strategy combines a long-term Simple Moving Average (SMA)

as a trend filter with the Parabolic SAR (Stop and Reverse) indicator for entry
signals. The SMA determines the overall market regime (long-only or short-only).
Within that regime, the PSAR provides precise entry signals when it flips direction,
indicating a potential trend continuation. A trailing stop-loss is used for risk
management.

 Main Parts of the Strategy Class Code (PsarTrendFilterStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # Trend filter parameters
 ('ma_period', 30),
 # Parabolic SAR parameters (standard defaults)
 ('psar_af', 0.01),
 ('psar_afmax', 0.1),
 # Exit management
 ('trail_percent', 0.02), # Trailing stop of 2%
)

 ma_period: The period for the Simple Moving Average (SMA), which
acts as a long-term trend filter. Trades are only allowed in the
direction of this SMA.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 29

 psar_af: The initial acceleration factor for the Parabolic SAR (PSAR)
indicator.

 psar_afmax: The maximum acceleration factor for PSAR. The
acceleration factor increases as the trend progresses, making the
PSAR line track closer to the price.

 trail_percent: The percentage used for the trailing stop-loss order
placed after an entry.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Check for pending orders
 if self.order:
 return

 # --- Entry Logic ---
 if not self.position: # Only consider new entries if not
currently in a position.
 # --- Long-Only Regime ---
 # If current closing price is above the SMA, it's
considered an uptrend.
 if self.data.close[0] > self.sma[0]:
 # A buy signal occurs when the price crosses ABOVE
the PSAR, indicated by psar_cross > 0.
 if self.psar_cross[0] > 0.0:
 self.order = self.buy() # Place a buy order

 # --- Short-Only Regime ---
 # If current closing price is below the SMA, it's
considered a downtrend.
 elif self.data.close[0] < self.sma[0]:
 # A sell signal occurs when the price crosses BELOW
the PSAR, indicated by psar_cross < 0.
 if self.psar_cross[0] < 0.0:
 self.order = self.sell() # Place a sell order

 Order Check: The method first checks for any pending orders
(self.order) and returns if one exists.

 Entry Logic (No Position): If the strategy is not currently in an open
position (not self.position):

 Long-Only Regime: If the current closing price
(self.data.close[0]) is above the Simple Moving Average
(self.sma[0]), the strategy is in a bullish regime. A buy() order
is placed if the self.psar_cross[0] value is greater than 0,
indicating that the price has just crossed above the PSAR line
(a bullish flip of the PSAR).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 30

 Short-Only Regime: If the current closing price is below the
SMA, the strategy is in a bearish regime. A sell() order is
placed if self.psar_cross[0] is less than 0, indicating that
the price has just crossed below the PSAR line (a bearish flip of
the PSAR).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 31

Regime Filtered Trend Strategy
 Logic and Idea: This sophisticated strategy adapts its trading style by classifying

the current market into “trending” or “ranging” regimes. It uses a combination of
indicators (ADX, Bollinger Band Width, Volatility, MA separation) to determine the
regime with a degree of confidence. Trend-following signals (MA crossovers) are
only acted upon when the market is confirmed to be in a trending regime. Position
sizing and stop-loss multipliers are also adjusted based on the detected regime.

 Main Parts of the Strategy Class Code (RegimeFilteredTrendStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('ma_fast', 20), # Fast moving average period
 ('ma_slow', 50), # Slow moving average period
 ('adx_period', 14), # ADX period
 ('adx_trending_threshold', 25), # ADX threshold for trending
regime
 ('bb_period', 20), # Bollinger Bands period
 ('bb_width_threshold', 0.03), # BB width threshold for
trending (3% of mid-band)
 ('volatility_lookback', 20), # Volatility measurement period
for regime classification
 ('vol_trending_threshold', 0.025), # Normalized volatility
threshold for trending (2.5% of price)
 ('atr_period', 14), # ATR period for stop-loss
calculation

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 32

 ('trail_atr_mult', 2.0), # Trailing stop multiplier (for
trending regime)
 ('range_atr_mult', 1.5), # Trailing stop multiplier (for
ranging regime)
 ('max_position_pct', 0.95), # Maximum percentage of cash to
risk per trade
 ('min_position_pct', 0.20), # Minimum percentage of cash to
risk per trade
 ('regime_confirmation', 3), # Number of consecutive bars
required to confirm a regime change
)

 ma_fast, ma_slow: Periods for the fast and slow moving averages used
for trend-following signals.

 adx_period, adx_trending_threshold: Parameters for the ADX
indicator, used to identify strong trends.

 bb_period, bb_width_threshold: Parameters for Bollinger Bands,
where a wide band width can indicate trending.

 volatility_lookback, vol_trending_threshold: Parameters for
calculating and classifying volatility (ATR/Close) to identify trending
environments.

 atr_period, trail_atr_mult, range_atr_mult: Parameters for
Average True Range (ATR) and its multipliers, which adapt stop-loss
distances based on the detected market regime.

 max_position_pct, min_position_pct: Define the upper and lower
bounds for dynamically adjusted position sizing.

 regime_confirmation: The number of consecutive bars that must
confirm a new regime before it is considered established.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Skip if order is pending
 if self.order:
 return

 # Update volatility tracking
 current_vol = self.calculate_volatility()
 if current_vol > 0:
 self.volatility_history.append(current_vol)
 if len(self.volatility_history) >
self.params.volatility_lookback:
 self.volatility_history = self.volatility_history[-
self.params.volatility_lookback:]

 # Update regime classification

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 33

 self.update_regime_state()

 # Handle existing positions with adaptive stops
 if self.position:
 if not self.trail_order:
 stop_multiplier = self.get_adaptive_stop_multiplier()

 if self.position.size > 0:
 self.trail_order = self.sell(
 exectype=bt.Order.StopTrail,
 trailamount=self.atr[0] * stop_multiplier)
 elif self.position.size < 0:
 self.trail_order = self.buy(
 exectype=bt.Order.StopTrail,
 trailamount=self.atr[0] * stop_multiplier)
 return

 # Ensure sufficient data
 required_bars = max(self.params.ma_slow,
self.params.adx_period, self.params.bb_period)
 if len(self) < required_bars:
 return

 # Check if we should engage in trend following
 if not self.should_trade_trend_following():
 return # Stay out during non-trending regimes

 # Moving average crossover signals (only in trending regimes)
 ma_bullish_cross = (self.ma_fast[0] > self.ma_slow[0] and
 self.ma_fast[-1] <= self.ma_slow[-1])
 ma_bearish_cross = (self.ma_fast[0] < self.ma_slow[0] and
 self.ma_fast[-1] >= self.ma_slow[-1])

 # Position sizing based on regime
 position_size_pct = self.calculate_regime_position_size()
 current_price = self.dataclose[0]

 # LONG ENTRY: MA bullish cross in trending regime
 if ma_bullish_cross and not self.position:
 self.cancel_trail()

 # Calculate position size
 cash = self.broker.getcash()
 target_value = cash * position_size_pct
 shares = target_value / current_price

 self.order = self.buy(size=shares)

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 34

 # SHORT ENTRY: MA bearish cross in trending regime
 elif ma_bearish_cross and not self.position:
 self.cancel_trail()

 # Calculate position size
 cash = self.broker.getcash()
 target_value = cash * position_size_pct
 shares = target_value / current_price

 self.order = self.sell(size=shares)

 # Alternative entry: Strong directional bias in confirmed
trending regime
 elif (not self.position and self.current_regime == "trending"
and
 self.regime_confidence > 0.8):

 # Strong trend continuation signals
 ma_spread = (self.ma_fast[0] - self.ma_slow[0]) /
self.ma_slow[0]

 if ma_spread > 0.03: # Strong uptrend (3% MA spread)
 cash = self.broker.getcash()
 target_value = cash * (position_size_pct * 0.7) #
Smaller position
 shares = target_value / current_price
 self.order = self.buy(size=shares)

 elif ma_spread < -0.03: # Strong downtrend
 cash = self.broker.getcash()
 target_value = cash * (position_size_pct * 0.7) #
Smaller position
 shares = target_value / current_price
 self.order = self.sell(size=shares)

 Order Check and Volatility/Regime Update: The method first
checks for pending orders. It then updates the internal
volatility_history and calls update_regime_state() to classify
the current market regime based on multiple indicators.

 Adaptive Stop Management: If the strategy is in an open position, it
checks if a trailing stop (self.trail_order) is active. If not, it places
one using an adaptive_stop_multiplier (which varies based on the
current regime and volatility).

 Data Sufficiency and Trend Following Check: Ensures enough
historical data is available. It then calls
should_trade_trend_following() to determine if the current market

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 35

regime is conducive to trend-following (i.e., not ranging or highly
uncertain). If not, it returns.

 Entry Logic (No Position): If no position is open and trend-following is
allowed:

 It checks for ma_bullish_cross (fast MA crosses above slow
MA) or ma_bearish_cross (fast MA crosses below slow MA).

 If a valid crossover occurs, it calculates a dynamic
position_size_pct using
calculate_regime_position_size() and places a buy() or
sell() order.

 An “Alternative Entry” is included for highly confirmed trending
regimes (regime_confidence > 0.8), which allows for a
slightly smaller position size if there’s a strong and sustained
MA spread, even without a fresh crossover.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 36

SuperTrend Confirmation Strategy
 Logic and Idea: This strategy uses the SuperTrend indicator, a popular tool for

identifying trends and generating signals. The key idea here is to add a
“confirmation” step: instead of entering immediately when the SuperTrend flips,
the strategy waits for the next candle to close in the direction of the new trend. This

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 37

aims to filter out false signals and improve signal quality. A trailing stop-loss is
used for risk management.

 Main Parts of the Strategy Class Code (SuperTrendConfirmationStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('st_period', 7),
 ('st_multiplier', 2.0),
 ('trail_percent', 0.02),
)

 st_period: The period used for calculating the Average True Range
(ATR) component of the SuperTrend indicator.

 st_multiplier: The multiplier applied to the ATR to determine the
distance of the SuperTrend line from the median price.

 trail_percent: The percentage used for the trailing stop-loss order
placed after an entry is completed.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: # If there's an existing order pending, do
nothing
 return

 # Determine if current and previous bars are in an uptrend
based on SuperTrend
 is_uptrend = self.data.close[0] > self.st.supertrend[0]
 was_uptrend = self.data.close[-1] > self.st.supertrend[-1]

 # --- Confirmation Logic ---
 # If we were waiting for a buy confirmation from the previous
bar's flip
 if self.waiting_for_buy_confirmation:
 self.waiting_for_buy_confirmation = False # Reset the
flag
 if is_uptrend and not self.position: # If still in
uptrend and no position, confirm and buy
 self.order = self.buy()
 return # Exit to avoid placing multiple orders

 # If we were waiting for a sell confirmation from the
previous bar's flip
 if self.waiting_for_sell_confirmation:
 self.waiting_for_sell_confirmation = False # Reset the
flag

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 38

 if not is_uptrend and not self.position: # If still in
downtrend and no position, confirm and sell
 self.order = self.sell()
 return # Exit to avoid placing multiple orders

 # --- Flip Detection Logic ---
 # Detects if SuperTrend has just flipped from downtrend to
uptrend
 if is_uptrend and not was_uptrend:
 # Only set the flag if not already waiting for a sell
confirmation
 # (prevents conflicting signals from setting flags
simultaneously)
 if not self.waiting_for_sell_confirmation:
 self.waiting_for_buy_confirmation = True

 # Detects if SuperTrend has just flipped from uptrend to
downtrend
 if not is_uptrend and was_uptrend:
 # Only set the flag if not already waiting for a buy
confirmation
 if not self.waiting_for_buy_confirmation:
 self.waiting_for_sell_confirmation = True

 Order Check: The method first checks if an order is pending
(self.order) and returns if it is, preventing new entries.

 Trend Status: is_uptrend and was_uptrend booleans check if the
current and previous closing prices, respectively, were above their
corresponding SuperTrend values. This helps detect SuperTrend flips.

 Confirmation Logic:
 If self.waiting_for_buy_confirmation was true from the

previous bar (meaning a bullish flip occurred then), the flag is
reset. If the is_uptrend remains true on the current bar and
there’s no open position, a buy() order is placed.

 A similar logic applies for
self.waiting_for_sell_confirmation.

 Flip Detection Logic:
 If the current state is is_uptrend but the previous state

was_uptrend was false, it means the SuperTrend just flipped
from bearish to bullish. In this case,
self.waiting_for_buy_confirmation is set to True (unless a
sell confirmation was already pending).

 Conversely, if not is_uptrend and was_uptrend was true, the
SuperTrend just flipped from bullish to bearish, and
self.waiting_for_sell_confirmation is set to True. The

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 39

strategy then waits for the next bar to confirm this new trend
direction.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 40

VIDYA Strategy
 Logic and Idea: This strategy uses the Volatility Index Dynamic Average (VIDYA),

an adaptive moving average that adjusts its smoothing period based on market
volatility (often measured by CMO - Chande Momentum Oscillator). The idea is that
the VIDYA responds faster during volatile, trending periods and slower during calm,
ranging periods. Trades are initiated when price breaks significantly from the VIDYA,
confirmed by ADX (trend strength) and overall momentum. An ATR-based trailing
stop is used.

 Main Parts of the Strategy Class Code (VIDYAStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('cmo_period', 14), # Period for Chande Momentum Oscillator
(CMO), used for VIDYA's adaptability
 ('period_min', 10), # Minimum period for VIDYA's EMA
component
 ('period_max', 60), # Maximum period for VIDYA's EMA
component
 ('atr_period', 14), # Period for Average True Range (ATR),
used for trailing stops
 ('atr_multiplier', 1.5), # Multiplier for ATR to set trailing
stop distance
 ('cooldown_bars', 3), # Number of bars to wait after an exit

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 41

before re-entering
 ('threshold_pct', 0.01), # Percentage deviation from VIDYA
for breakout entry (e.g., 1%)
 ('adx_period', 14), # Period for Average Directional Index
(ADX)
 ('adx_threshold', 20), # ADX threshold for trend strength
confirmation
 ('momentum_period', 30), # Period for Momentum indicator
 ('momentum_threshold', 0.01), # Minimum percentage momentum
required for entry
)

 cmo_period: Period for the Chande Momentum Oscillator (CMO),
which drives the adaptiveness of VIDYA.

 period_min, period_max: The minimum and maximum periods
between which VIDYA’s internal EMA period can dynamically adjust.

 atr_period, atr_multiplier: Parameters for the Average True Range
(ATR), used to calculate the trailing stop distance.

 cooldown_bars: A cooling-off period (in bars) after an exit, during
which new entries are prevented.

 threshold_pct: A percentage deviation from the VIDYA line that the
price must exceed to trigger a breakout entry.

 adx_period, adx_threshold: Parameters for the ADX indicator, used
to confirm sufficient trend strength for trading.

 momentum_period, momentum_threshold: Parameters for a general
Momentum indicator, ensuring that entries are backed by sufficient
price momentum.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 min_periods = max(self.params.cmo_period,
self.params.period_max, self.params.atr_period,
 self.params.adx_period,
self.params.momentum_period)
 if len(self.data) < min_periods + 1: # Ensure all indicators
have enough data
 return

 # Cancel pending orders
 if self.order:
 return

 # Store previous VIDYA before update
 self.prev_vidya_value = self.vidya_value

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 42

 # Calculate adaptive period using lagged CMO
 lagged_norm_abs_cmo = min(1.0, abs(self.cmo[-1]) / 100.0) #
CMO from previous bar
 adaptive_period = self.params.period_max -
lagged_norm_abs_cmo * (self.params.period_max -
self.params.period_min)
 alpha = 2.0 / (adaptive_period + 1) # Calculate EMA smoothing
factor (alpha)

 # Initialize/update VIDYA
 if self.vidya_value is None: # For the very first calculation
 self.vidya_value = self.data.close[0]
 return
 self.vidya_value = alpha * self.data.close[0] + (1 - alpha) *
self.vidya_value # VIDYA calculation

 # Entry signals with filtering
 lagged_close = self.data.close[-1] # Closing price of the
previous bar
 lagged_vidya = self.prev_vidya_value # VIDYA value from the
previous bar

 # Cooldown check: prevent re-entry too quickly after an exit
 if (len(self.data) - self.last_exit_bar) <
self.params.cooldown_bars:
 return

 # TREND STRENGTH FILTER - ADX must be above threshold
 if self.adx[0] < self.params.adx_threshold:
 return # Skip if trend is not strong enough

 # MOMENTUM VALIDATOR - Recent momentum must be strong enough
 momentum_pct = (self.momentum[0] / self.data.close[-
self.params.momentum_period]) * 100 # Calculate momentum as
percentage
 if abs(momentum_pct) < self.params.momentum_threshold:
 return # Skip if momentum is too weak

 # Entry with threshold confirmation + filters
 if not self.position: # If no open position, look for entry
signals
 threshold = lagged_vidya * self.params.threshold_pct #
Calculate the price threshold for breakout

 # Long: price above VIDYA + positive momentum + strong
trend
 if (lagged_close > (lagged_vidya + threshold) and #
Previous close breaks above VIDYA + threshold
 momentum_pct > self.params.momentum_threshold): #

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 43

Confirmed by positive momentum
 self.order = self.buy() # Place buy order
 # Set trailing stop immediately after entry
 self.sell(exectype=bt.Order.StopTrail,
trailamount=self.params.atr_multiplier * self.atr[0])

 # Short: price below VIDYA + negative momentum + strong
trend
 elif (lagged_close < (lagged_vidya - threshold) and #
Previous close breaks below VIDYA - threshold
 momentum_pct < -self.params.momentum_threshold): #
Confirmed by negative momentum
 self.order = self.sell() # Place sell order
 # Set trailing stop immediately after entry
 self.buy(exectype=bt.Order.StopTrail,
trailamount=self.params.atr_multiplier * self.atr[0])

 # Exit on signal reversal (if currently in a position)
 elif self.position.size > 0 and lagged_close < lagged_vidya:
If long, exit if price falls below VIDYA
 self.close()
 self.last_exit_bar = len(self.data) # Record exit bar for
cooldown
 elif self.position.size < 0 and lagged_close > lagged_vidya:
If short, exit if price rises above VIDYA
 self.close()
 self.last_exit_bar = len(self.data) # Record exit bar for
cooldown

 Data Sufficiency and Order/Cooldown Check: Ensures enough bars
for all indicators. It then checks for pending orders and if the strategy
is within a cooldown_bars period after a previous exit.

 VIDYA Calculation:
 It calculates lagged_norm_abs_cmo (normalized absolute CMO

from the previous bar) which dictates how adaptive the VIDYA
will be. A higher absolute CMO means higher volatility, leading
to a shorter adaptive_period.

 alpha is then calculated from this adaptive_period to be used
in the Exponential Moving Average formula.

 self.vidya_value is updated using the EMA formula, where
the alpha dynamically changes based on market volatility.

 Filter Conditions (No Position): Before entering a trade, several
filters are applied:

 ADX Trend Strength: if self.adx[0] <
self.params.adx_threshold: return ensures that trades are

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 44

only considered when the ADX indicates a sufficiently strong
trend.

 Momentum Validator: if abs(momentum_pct) <
self.params.momentum_threshold: return checks if the
current price momentum (calculated as a percentage change)
meets a minimum threshold, ensuring the move has
conviction.

 Entry Logic (No Position): If all filters pass and there’s no open
position:

 A threshold is calculated as a percentage of the
lagged_vidya.

 Long Entry: A buy() order is placed if the lagged_close
(previous bar’s closing price) breaks above lagged_vidya +
threshold and momentum_pct is positive and exceeds
momentum_threshold. A trailing stop is immediately placed.

 Short Entry: A sell() order is placed if lagged_close breaks
below lagged_vidya - threshold and momentum_pct is
negative and below -momentum_threshold. A trailing stop is
immediately placed.

 Exit Logic (In Position):
 If in a long position, the position is closed if lagged_close falls

below lagged_vidya, signaling a reversal against the trend.
 If in a short position, the position is closed if lagged_close

rises above lagged_vidya. self.last_exit_bar is updated to
initiate the cooldown period.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 45

Vortex Trend Capture Strategy
 Logic and Idea: This strategy employs the Vortex Indicator (VI) for identifying and

confirming trend direction. The Vortex Indicator consists of two lines, VI+ and VI-,
which measure positive and negative price movement. A crossover of these lines
signals a potential trend. This strategy filters these signals with a long-term Moving

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 46

Average (MA) for macro trend alignment and an Average True Range (ATR) based
volatility filter to ensure trades are taken in stable market conditions. Risk is
managed with an ATR-based trailing stop.

 Main Parts of the Strategy Class Code (VortexTrendCaptureStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # Vortex Indicator
 ('vortex_period', 30),
 # Macro Trend Filter
 ('long_term_ma_period', 30),
 # Volatility Filter
 ('atr_period', 7),
 ('atr_threshold', 0.05), # Max ATR as % of price to allow
trades (e.g., 5%)
 # Risk Management
 ('atr_stop_multiplier', 3.0),
)

 vortex_period: The period for calculating the Vortex Indicator’s VI+
and VI- lines.

 long_term_ma_period: The period for the Simple Moving Average
(SMA), used to determine the prevailing macro trend direction.

 atr_period: The period for calculating the Average True Range (ATR),
used for both volatility filtering and trailing stop calculations.

 atr_threshold: The maximum acceptable ATR value (as a percentage
of price) for trades to be considered. This filters out overly volatile or
choppy market conditions.

 atr_stop_multiplier: A multiplier applied to the ATR value to
determine the distance of the trailing stop.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: return # Exit if there's an existing order
pending.

 if not self.position: # Logic when not currently in a trade.
 # --- Filter Conditions ---
 # 1. Is market volatility stable? (ATR as percentage of
close price is below threshold)
 is_stable = (self.atr[0] / self.data.close[0]) <
self.p.atr_threshold

 # 2. Is price aligned with the macro trend?

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 47

 is_macro_uptrend = self.data.close[0] >
self.long_term_ma[0]
 is_macro_downtrend = self.data.close[0] <
self.long_term_ma[0]

 # 3. Has a Vortex crossover signal occurred?
 is_buy_signal = self.vortex_cross[0] > 0 # VI+ crosses
above VI-
 is_sell_signal = self.vortex_cross[0] < 0 # VI- crosses
above VI+

 # --- Entry Logic ---
 # Buy if market is stable, macro trend is up, and Vortex
gives a buy signal.
 if is_stable and is_macro_uptrend and is_buy_signal:
 self.order = self.buy()
 # Sell if market is stable, macro trend is down, and
Vortex gives a sell signal.
 elif is_stable and is_macro_downtrend and is_sell_signal:
 self.order = self.sell()

 elif self.position: # Logic when currently in a trade, for
trailing stop management.
 # --- Manual ATR Trailing Stop Logic ---
 if self.position.size > 0: # If long position
 # Keep track of the highest price since entry.
 self.highest_price_since_entry =
max(self.highest_price_since_entry, self.data.high[0])
 # Calculate a new potential stop price based on the
highest price and ATR multiplier.
 new_stop = self.highest_price_since_entry -
(self.atr[0] * self.p.atr_stop_multiplier)
 # Update the stop price, ensuring it only moves up
(for long positions) to lock in profit.
 self.stop_price = max(self.stop_price, new_stop)
 # If the current closing price falls below the
trailing stop, close the position.
 if self.data.close[0] < self.stop_price: self.order =
self.close()
 elif self.position.size < 0: # If short position
 # Keep track of the lowest price since entry.
 self.lowest_price_since_entry =
min(self.lowest_price_since_entry, self.data.low[0])
 # Calculate a new potential stop price based on the
lowest price and ATR multiplier.
 new_stop = self.lowest_price_since_entry +
(self.atr[0] * self.p.atr_stop_multiplier)
 # Update the stop price, ensuring it only moves down
(for short positions).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 48

 self.stop_price = min(self.stop_price, new_stop)
 # If the current closing price rises above the
trailing stop, close the position.
 if self.data.close[0] > self.stop_price: self.order =
self.close()

 Order Check: The method starts by checking if self.order is
pending. If true, it returns to avoid placing new orders.

 Filter Conditions (No Position): If the strategy is not in a trade:
 Volatility Stability (is_stable): Checks if the current ATR,

normalized by the closing price, is below the atr_threshold.
This filters out excessively choppy or highly volatile periods.

 Macro Trend Alignment
(is_macro_uptrend/is_macro_downtrend): Determines if the
current closing price is above (uptrend) or below (downtrend)
the long_term_ma. This ensures trades align with the broader
market direction.

 Vortex Crossover Signal (is_buy_signal/is_sell_signal):
Checks if self.vortex_cross[0] is positive (VI+ crosses
above VI-, bullish) or negative (VI- crosses above VI+, bearish).

 Entry Logic (No Position): A buy() order is placed if all three
conditions are met for a long trade (stable, macro uptrend, and
bullish Vortex signal). A sell() order is placed if all conditions align
for a short trade.

 Trailing Stop Logic (In Position): If the strategy is in a position, it
manually manages a trailing stop. For a long position, it tracks the
highest_price_since_entry and updates self.stop_price to trail
that high. If the price falls below this stop_price, the position is
closed. A similar logic applies to short positions, trailing the
lowest_price_since_entry.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 49

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 50

ZLEMA Crossover Strategy
 Logic and Idea: This strategy utilizes the Zero Lag Exponential Moving Average

(ZLEMA), a variation of the EMA designed to reduce lag, making it more responsive
to price changes. The strategy generates trading signals based on the crossover of a
fast ZLEMA and a slow ZLEMA, similar to traditional moving average crossover
systems but with potentially faster signal generation due to reduced lag. A fixed
percentage stop-loss is used for risk management.

 Main Parts of the Strategy Class Code (ZLEMAStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('fast_period', 7), # Period for the faster Zero Lag EMA
 ('slow_period', 30), # Period for the slower Zero Lag EMA
 ('stop_loss_pct', 0.01), # Fixed percentage stop-loss (e.g.,
1%)
)

 fast_period: The period for the faster ZLEMA, which responds
quickly to price changes.

 slow_period: The period for the slower ZLEMA, providing a smoother,
longer-term average.

 stop_loss_pct: A fixed percentage from the entry price used to set a
static stop-loss order.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 51

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order is not None: # If an order is already pending,
return
 return

 # Zero Lag EMA crossover signals
 if self.crossover > 0: # Fast ZLEMA crosses above slow ZLEMA
(bullish crossover)
 print(f"BUY SIGNAL at bar {len(self)}") # Logging the
signal
 if self.position.size < 0: # If currently in a short
position, close it first
 if self.stop_order is not None: # Cancel any pending
stop order for the short position
 self.cancel(self.stop_order)
 self.order = self.close() # Close the short position
 elif not self.position: # If no position, go long
 self.order = self.buy() # Place a buy order

 elif self.crossover < 0: # Fast ZLEMA crosses below slow
ZLEMA (bearish crossover)
 print(f"SELL SIGNAL at bar {len(self)}") # Logging the
signal
 if self.position.size > 0: # If currently in a long
position, close it first
 if self.stop_order is not None: # Cancel any pending
stop order for the long position
 self.cancel(self.stop_order)
 self.order = self.close() # Close the long position
 elif not self.position: # If no position, go short
 self.order = self.sell() # Place a sell order

 Order Check: The method first checks if self.order is not None (an
order is pending) and returns if so.

 Crossover Signals: It checks the self.crossover indicator, which
signals when the fast_zlema crosses the slow_zlema.

 Long Signal (self.crossover > 0): If the fast ZLEMA crosses
above the slow ZLEMA, indicating bullish momentum:

o If the strategy is currently in a short position
(self.position.size < 0), it first cancels any
associated stop order and then closes the short
position.

o If no position is open (not self.position), a buy()
order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 52

 Short Signal (self.crossover < 0): If the fast ZLEMA crosses
below the slow ZLEMA, indicating bearish momentum:

o If the strategy is currently in a long position
(self.position.size > 0), it first cancels any
associated stop order and then closes the long
position.

o If no position is open, a sell() order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 53

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 54

3. Mean-Reversion Strategies

Mean-reversion strategies are based on the premise that asset prices tend to revert to
their average or mean over time. These strategies typically involve buying when the price
deviates significantly below its mean (expecting it to rise back) and selling when it deviates
significantly above its mean (expecting it to fall back). They are often employed in sideways
or ranging markets.

MA Bounce Strategy
 Logic and Idea: This strategy is a mean-reversion approach that seeks to capitalize

on price “bounces” off a key moving average (MA) within an established trend. The
idea is that in an uptrend, prices often pull back to a support level (the key MA)
before continuing their upward movement. The strategy identifies these pullbacks
and enters a long position when the price closes back above the MA, confirming the
bounce. A longer MA acts as a trend filter, and a fixed percentage stop-loss is used.

 Main Parts of the Strategy Class Code (MaBounceStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('key_ma_period', 7), # MA for bounce (e.g., 50 SMA)
 ('filter_ma_period', 30), # Longer MA for trend filter (e.g.,
200 SMA)
 ('ma_type', 'SMA'), # Type of MA ('SMA' or 'EMA')
 ('order_percentage', 0.95),
 ('stop_loss_pct', 0.02) # Example: 2% stop loss below
entry price
)

 key_ma_period: The period for the “key” Moving Average, which is
expected to act as a dynamic support/resistance level for price
bounces.

 filter_ma_period: The period for a longer Moving Average, used as a
macro trend filter. Trades are generally only taken in the direction of
this longer MA.

 ma_type: A string (‘SMA’ or ‘EMA’) to specify whether Simple Moving
Averages or Exponential Moving Averages should be used.

 order_percentage: The percentage of available cash to use for each
trade.

 stop_loss_pct: The fixed percentage below the entry price to set a
static stop-loss order.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 55

 def next(self):
 # Check if indicators have enough data
 if len(self.data_close) < self.params.filter_ma_period:
 return

 # Check for open orders
 if self.order:
 return

 # --- Check Stop Loss ---
 if self.position and self.stop_price is not None:
 if self.data_close[0] < self.stop_price: # If current
close falls below calculated stop price
 self.order = self.close() # Close position
 return # Exit check for this bar

 # --- Entry Logic ---
 if not self.position: # Only look for entry if no position is
open
 # 1. Confirm Uptrend State (Price > Filter MA, Key MA >
Filter MA - optional but good)
 uptrend_confirmed = (self.data_close[0] >
self.filter_ma[0] and # Current price above filter MA
 self.key_ma[0] > self.filter_ma[0])
Key MA above filter MA (stronger trend)

 if uptrend_confirmed: # Only consider bounces in a
confirmed uptrend
 # 2. Check for Pullback: Low price touched or went
below the key MA in the previous bar
 touched_ma_prev_bar = self.data_low[-1] <=
self.key_ma[-1]

 # 3. Check for Rejection/Entry Trigger: Price closes
back ABOVE the key MA on the current bar
 closed_above_ma_curr_bar = self.data_close[0] >
self.key_ma[0]

 if touched_ma_prev_bar and closed_above_ma_curr_bar:
If pullback and bounce confirmed
 cash = self.broker.get_cash()
 size = (cash * self.params.order_percentage) /
self.data_close[0] # Calculate position size
 self.order = self.buy(size=size) # Place a buy
order

 Data Sufficiency and Order Check: The method ensures that enough
historical data is available for indicator calculations and that no
orders are pending.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 56

 Stop Loss Check (If in Position): If an open position exists and
self.stop_price has been set, it checks if the current
data_close[0] has fallen below this stop price. If so, the position is
closed.

 Entry Logic (No Position): If no position is open:
 Uptrend Confirmation (uptrend_confirmed): It first verifies a

prevailing uptrend. This is typically when the current closing
price is above the filter_ma, and optionally, when the key_ma
is also above the filter_ma (for stronger confirmation).

 Pullback Detection (touched_ma_prev_bar): If an uptrend is
confirmed, it checks if the low price of the previous bar
(self.data_low[-1]) was less than or equal to the key_ma of
the previous bar (self.key_ma[-1]). This signifies that price
pulled back to touch or penetrate the key moving average.

 Bounce Confirmation (closed_above_ma_curr_bar): It then
checks if the current bar’s closing price (self.data_close[0])
has closed above the current key_ma. This confirms the
“bounce” or rejection of the key MA as support.

 If both the touched_ma_prev_bar and
closed_above_ma_curr_bar conditions are met, a buy() order
is placed with a calculated size.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 57

Ornstein-Uhlenbeck (OU) Mean Reversion Strategy
 Logic and Idea: This advanced strategy applies the Ornstein-Uhlenbeck (OU)

process, a mathematical model often used to describe mean-reverting processes,
to price data. The core idea is to estimate the mean (equilibrium price) and the
speed of reversion from historical price movements. Trades are initiated when the

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 58

price deviates significantly from this estimated mean (measured by a Z-score),
expecting it to revert. The strategy also incorporates a Simple Moving Average (SMA)
as a trend filter to ensure mean reversion trades are aligned with the broader trend.

 Main Parts of the Strategy Class Code (OUMeanReversionStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('lookback', 30), # Rolling window for OU parameter
estimation
 ('sma_period', 30), # SMA period for trend filter
 ('entry_threshold', 1.), # Z-score threshold for entry
 ('exit_threshold', 0.1), # Z-score threshold for exit
 ('printlog', False), # Print trade logs
)

 lookback: The number of historical bars used in the rolling window to
estimate the Ornstein-Uhlenbeck process parameters. This window
determines how frequently the model’s mean and volatility are
updated.

 sma_period: The period for a Simple Moving Average (SMA) used as a
trend filter. This ensures that mean-reversion trades are taken only
when they align with the broader, underlying trend (e.g., buying when
oversold in an uptrend).

 entry_threshold: A Z-score threshold for opening a position. The
price must deviate this many standard deviations from the estimated
mean to trigger an entry.

 exit_threshold: A Z-score threshold for closing a position. Once the
price reverts and its Z-score moves back within this threshold, the
trade is exited.

 printlog: A boolean flag to enable or disable detailed logging of
strategy actions.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Need enough data for parameter estimation
 if len(self.dataclose) < self.params.lookback:
 return

 # Get recent log prices for parameter estimation
 recent_log_prices = np.array([np.log(self.dataclose[-i]) for
i in range(self.params.lookback-1, -1, -1)])

 # Estimate OU parameters
 mu, theta, sigma, eq_std =

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 59

self.estimate_ou_parameters(recent_log_prices)

 # Ensure valid parameters are obtained
 if mu is None or eq_std is None or eq_std <= 0:
 return

 # Calculate current deviation and z-score
 current_log_price = np.log(self.dataclose[0])
 deviation = current_log_price - mu
 z_score = deviation / eq_std

 # Store for analysis (optional, for visualization/debugging)
 self.ou_params.append({'mu': mu, 'theta': theta, 'sigma':
sigma, 'eq_std': eq_std})
 self.z_scores.append(z_score)

 self.log(f'Close: {self.dataclose[0]:.4f}, Log Price:
{current_log_price:.4f}, '
 f'μ: {mu:.4f}, Z-Score: {z_score:.2f}')

 # Skip if we have a pending order
 if self.order:
 return

 # Trading logic
 if not self.position: # No position - look for entry
 if z_score < -self.params.entry_threshold and
self.dataclose[0] > self.sma[0]:
 # Price below mean (oversold) AND in an uptrend - go
long (expect reversion up)
 self.log(f'LONG SIGNAL: Z-Score {z_score:.2f}')
 self.order = self.buy()
 self.position_type = 'long' # Track position type

 elif z_score > self.params.entry_threshold and
self.dataclose[0] < self.sma[0]:
 # Price above mean (overbought) AND in a downtrend -
go short (expect reversion down)
 self.log(f'SHORT SIGNAL: Z-Score {z_score:.2f}')
 self.order = self.sell()
 self.position_type = 'short' # Track position type

 else: # We have a position - look for exit
 if self.position_type == 'long' and z_score > -
self.params.exit_threshold:
 # Exit long position if price reverts closer to mean
(Z-score rises)
 self.log(f'EXIT LONG: Z-Score {z_score:.2f}')
 self.order = self.sell()

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 60

 self.position_type = None

 elif self.position_type == 'short' and z_score <
self.params.exit_threshold:
 # Exit short position if price reverts closer to mean
(Z-score falls)
 self.log(f'EXIT SHORT: Z-Score {z_score:.2f}')
 self.order = self.buy()
 self.position_type = None

 Data Sufficiency and OU Parameter Estimation: The method first
ensures there’s enough data for the lookback period to estimate the
OU parameters. It then extracts recent_log_prices and calls
self.estimate_ou_parameters() to get the estimated mu (mean),
theta (reversion speed), sigma (volatility), and eq_std (equilibrium
standard deviation). It returns if any parameters are invalid.

 Z-score Calculation: The z_score is calculated by normalizing the
deviation of the current log price from the estimated mu by the
eq_std. This z_score indicates how far the price is from its estimated
mean in terms of standard deviations.

 Order Check: It checks for any pending orders (self.order) to
prevent placing new ones.

 Entry Logic (No Position): If the strategy is not in a position:
 Long Entry: A buy() order is placed if the z_score is below -

entry_threshold (indicating the price is significantly
“oversold” relative to its mean) AND the dataclose[0] is
above the sma[0] (confirming an overall uptrend, ensuring the
mean-reversion is with the trend).

 Short Entry: A sell() order is placed if the z_score is above
entry_threshold (indicating the price is significantly
“overbought”) AND the dataclose[0] is below the sma[0]
(confirming an overall downtrend).

 Exit Logic (In Position): If the strategy is in an open position:
 Exit Long: If in a long position and the z_score rises above -

exit_threshold (meaning the price has reverted back closer
to its estimated mean), the position is closed.

 Exit Short: If in a short position and the z_score falls below
exit_threshold, the position is closed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 61

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 62

Pivot Point Strategy
 Logic and Idea: This strategy is a mean-reversion and breakout system based on

traditional Pivot Points (PP) and their associated support (S1, S2, S3) and
resistance (R1, R2, R3) levels. Pivot points are calculated from the previous period’s
high, low, and close. The strategy identifies two types of interactions: “bounces”
(price reversing at a level) and “breakouts” (price breaking through a level). It uses
volume and RSI for confirmation and a fixed percentage stop-loss for risk
management. It can use daily, weekly, and monthly pivots.

 Main Parts of the Strategy Class Code (PivotPointStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('use_daily', True), # Use daily pivot points
 ('use_weekly', True), # Use weekly pivot points
 ('use_monthly', False), # Use monthly pivot points
 ('bounce_threshold', 0.01), # 0.2% threshold for level
interaction
 ('breakout_threshold', 0.03), # 0.5% threshold for breakouts
 ('volume_multiplier', 1.2), # Volume confirmation multiplier
 ('volume_period', 7), # Volume average period
 ('rsi_period', 14), # RSI for momentum confirmation
 ('stop_loss_pct', 0.05), # 1.5% stop loss
)

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 63

 use_daily, use_weekly, use_monthly: Boolean flags to enable or
disable the calculation and use of pivot points based on daily, weekly,
or monthly periods.

 bounce_threshold: A percentage (e.g., 0.01 for 1%) defining how
close the price must be to a pivot level to consider it a “bounce”
interaction.

 breakout_threshold: A percentage defining how far the price must
move beyond a pivot level to consider it a “breakout.”

 volume_multiplier, volume_period: Parameters for a Simple Moving
Average of volume, used to confirm trade signals (volume must
exceed average by a multiplier).

 rsi_period: Period for the Relative Strength Index (RSI), used to
confirm momentum and avoid overbought/oversold extremes.

 stop_loss_pct: The fixed percentage below/above the entry price for
a stop-loss order.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order is not None: # If an order is currently
pending, return
 return

 # Update OHLC data and calculate pivots for current period
 self.update_ohlc_data()

 # Get current price action
 current_price = self.close[0]
 current_high = self.high[0]
 current_low = self.low[0]

 # Check level interactions (bounce or breakout)
 interaction, level_price, timeframe, level_name =
self.check_level_interaction(
 current_price, current_high, current_low
)

 if interaction is None: # If no significant interaction with
any pivot level, return
 return

 # Trading logic based on pivot level interactions
 if interaction == 'touch' or interaction == 'near':
 # Bounce strategy - expect reversal at key levels
 if level_name.startswith('S'): # Support level - expect
bounce up (long signal)

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 64

 if (self.momentum_confirmation('long') and # Check
RSI for bullish bias
 self.volume_confirmation()): # Check for
increased volume

 if self.position.size < 0: # If currently short,
close short position
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # If no position, go
long
 self.order = self.buy()

 elif level_name.startswith('R'): # Resistance level -
expect bounce down (short signal)
 if (self.momentum_confirmation('short') and # Check
RSI for bearish bias
 self.volume_confirmation()): # Check for
increased volume

 if self.position.size > 0: # If currently long,
close long position
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # If no position, go
short
 self.order = self.sell()

 elif interaction == 'resistance_break': # Breakout of
Resistance (bullish signal)
 # Resistance breakout - go long
 if (self.momentum_confirmation('long') and
 self.volume_confirmation()):

 if self.position.size < 0: # Close short
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # Go long
 self.order = self.buy()

 elif interaction == 'support_break': # Breakout of Support
(bearish signal)
 # Support breakdown - go short
 if (self.momentum_confirmation('short') and
 self.volume_confirmation()):

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 65

 if self.position.size > 0: # Close long
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # Go short
 self.order = self.sell()

 Order Check and OHLC Update: The method first checks for pending
orders. It then calls self.update_ohlc_data() which is crucial for
dynamically calculating daily, weekly, and/or monthly pivot points
based on the OHLC data of the previous period.

 Level Interaction Detection: self.check_level_interaction() is
called to determine if the current price is touching, near, or breaking
out of any calculated pivot level, based on the defined thresholds. If
no significant interaction is found, the method returns.

 Trading Logic (Based on Interaction Type):
 Bounce Strategy ('touch' or 'near'): If the price is interacting

closely with a pivot level, it implies a potential reversal.
o If interacting with a Support (S) level: It expects a

bounce upwards. If momentum_confirmation('long')
(RSI not overbought/oversold for long) and
volume_confirmation() are true, it will close any
existing short position or enter a new long position.

o If interacting with a Resistance (R) level: It expects a
bounce downwards. With appropriate confirmations, it
will close existing long positions or enter a new short
position.

 Breakout Strategy ('resistance_break' or
'support_break'): If the price breaks significantly through a
pivot level, it implies trend continuation.

o Resistance Breakout: If a resistance_break occurs
with bullish confirmations, it will close shorts or enter a
long.

o Support Breakout: If a support_break occurs with
bearish confirmations, it will close longs or enter a
short. In all cases, before placing a new entry, any
existing self.stop_order is canceled if an opposing
position is being closed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 66

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 67

Quantile Channel Strategy
 Logic and Idea: This is an advanced mean-reversion strategy that uses Quantile

Regression to dynamically estimate price channels (upper, lower, and
median/trend line) based on historical price distribution. Unlike standard linear
regression which models the mean, quantile regression models specific quantiles
(e.g., 20th, 50th, 80th percentiles). The strategy looks for price breakouts from these
channels, expecting a reversion back to the mean. It also includes dynamic stop-
loss management and a confidence measure for the channel.

 Main Parts of the Strategy Class Code (QuantileChannelStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('lookback_period', 60), # Lookback for channel
estimation
 ('upper_quantile', 0.8), # Upper channel quantile (80th
percentile)
 ('lower_quantile', 0.2), # Lower channel quantile (20th
percentile)
 ('trend_quantile', 0.5), # Trend line quantile (median)
 ('breakout_threshold', 1.02), # Breakout confirmation (2%
above/below)
 ('stop_loss_pct', 0.08), # 8% stop loss
 ('rebalance_period', 1), # Daily rebalancing (how often
to re-estimate channels and trade)
 ('min_channel_width', 0.02), # Minimum 2% channel width (to

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 68

avoid very narrow, noisy channels)
 ('volume_confirm', False), # Volume confirmation (if
available) - not used in snippet, but a parameter
)

 lookback_period: The number of historical bars used to fit the
quantile regression models and estimate the channels.

 upper_quantile, lower_quantile, trend_quantile: The quantile
levels (e.g., 0.8 for 80th percentile) used to define the upper band,
lower band, and the central trend line of the channel.

 breakout_threshold: A multiplier (e.g., 1.02 for 2%) indicating how
far the price must break beyond the channel bands to be considered
a valid breakout.

 stop_loss_pct: A fixed percentage stop-loss that acts as an initial or
ultimate safety net.

 rebalance_period: How often (in bars) the strategy re-estimates the
channels and reviews its trading decisions.

 min_channel_width: A minimum percentage width for the channel to
prevent trading on extremely narrow, potentially unstable channels.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Collect price and time data
 current_price = self.data.close[0]
 current_time = len(self.prices) # Simple sequential index for
time

 self.prices.append(current_price)
 self.time_indices.append(current_time)

 # Keep only recent history for lookback period
 if len(self.prices) > self.params.lookback_period * 2: # Keep
buffer larger than lookback
 self.prices = self.prices[-self.params.lookback_period *
2:]
 self.time_indices = self.time_indices[-
self.params.lookback_period * 2:]

 # Estimate channels
 upper_channel, lower_channel, trend_line, confidence =
self.estimate_channels()

 if upper_channel is None: # Not enough data yet for
estimation
 return

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 69

 # Store channel estimates for plotting/analysis (optional)
 self.upper_channel.append(upper_channel)
 self.lower_channel.append(lower_channel)
 self.trend_line.append(trend_line)
 self.channel_confidence = confidence # Store confidence

 # Calculate channel width (for analysis/debug)
 width = (upper_channel - lower_channel) / trend_line
 self.channel_width.append(width)

 # Rebalancing logic: only run full logic every
'rebalance_period' bars
 self.rebalance_counter += 1
 if self.rebalance_counter < self.params.rebalance_period:
 # Still check stop loss even on non-rebalance bars
 if self.position.size > 0 and current_price <=
self.stop_price:
 self.close()
 elif self.position.size < 0 and current_price >=
self.stop_price:
 self.close()
 return # Skip full trading logic until next rebalance
period

 # Reset rebalance counter for the new period
 self.rebalance_counter = 0

 # Detect breakout
 breakout = self.detect_breakout(current_price, upper_channel,
lower_channel)

 # Current position status
 current_pos = 0
 if self.position.size > 0: current_pos = 1
 elif self.position.size < 0: current_pos = -1

 # Trading logic with channel confirmation
 if breakout != 0 and confidence > 0.3: # Require minimum
channel confidence for trading
 # Close existing opposing position if direction changed
 if current_pos != 0 and current_pos != breakout:
 self.close()
 current_pos = 0 # Position is now flat

 # Open new position on breakout if currently flat
 if current_pos == 0:
 if breakout == 1: # Upper breakout - go long
 self.buy()

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 70

 self.stop_price = lower_channel # Use lower
channel as stop (dynamic)
 self.trade_count += 1
 self.breakout_direction = 1

 elif breakout == -1: # Lower breakout - go short
 self.sell()
 self.stop_price = upper_channel # Use upper
channel as stop (dynamic)
 self.trade_count += 1
 self.breakout_direction = -1

 # Exit on return to channel (mean reversion)
 elif self.position.size != 0: # If in a position, check for
mean reversion exit
 in_channel = lower_channel <= current_price <=
upper_channel
 # If price is back inside the channel and close to the
trend line
 if in_channel and abs(current_price - trend_line) /
trend_line < 0.02: # 2% deviation from midline
 self.close()

 # Update trailing stops (dynamic adjustment based on channel
movement)
 if self.position.size > 0: # Long position
 new_stop = max(self.stop_price, lower_channel) # Stop can
only move up, or stay at lower channel
 if new_stop > self.stop_price:
 self.stop_price = new_stop

 elif self.position.size < 0: # Short position
 new_stop = min(self.stop_price, upper_channel) # Stop can
only move down, or stay at upper channel
 if new_stop < self.stop_price:
 self.stop_price = new_stop

 Data Collection and Channel Estimation: The method appends the
current price and a time index to internal buffers. It then calls
self.estimate_channels() to re-calculate the upper_channel,
lower_channel, and trend_line using quantile regression, along with
a channel_confidence score.

 Rebalancing Logic: The rebalance_counter ensures that the full
trading logic (including channel re-estimation and entry signal
evaluation) only runs every rebalance_period bars. However, stop-
loss checks are performed on every bar.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 71

 Breakout Detection (breakout): It calls self.detect_breakout() to
determine if the current price has broken out of the established
quantile channels, given the breakout_threshold.

 Trading Logic:
 Entry: If a breakout is detected and the channel_confidence

is above a minimum threshold (indicating a reliable channel),
the strategy acts. If an opposing position exists, it’s closed
first. Then, if no position is open, a buy() order is placed for an
upper breakout, or a sell() order for a lower breakout. The
stop_price is dynamically set to the opposite channel
boundary.

 Mean Reversion Exit: If the strategy is in an open position, it
also looks for mean-reversion exits. If the price returns
in_channel and is sufficiently close to the trend_line, the
position is closed. This prevents holding trades that fail to
sustain the breakout.

 Dynamic Stop Update: The stop_price is continuously
updated to trail the price, but it is “anchored” by the dynamic
channel boundaries (lower_channel for long, upper_channel
for short), ensuring it adapts to the evolving channel structure.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 72

VWAP Anchored Breakout Strategy
 Logic and Idea: This strategy focuses on price breakouts from prior session

highs/lows, but critically anchors these breakouts with Volume Weighted Average
Price (VWAP) and confirms them with ADX (for trend strength), volume, and ATR
expansion. The idea is to identify strong, validated breakouts where price, volume,

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 73

and volatility all align to signal a new trend, with VWAP providing a key reference
point. Both session and weekly VWAP are used. Trailing stops based on ATR are
used for risk management.

 Main Parts of the Strategy Class Code (VWAPAnchoredBreakoutStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # VWAP Parameters
 ('vwap_session_length', 7), # Session length for VWAP
calculation (e.g., 7 bars/days)
 ('vwap_weekly_length', 30), # Weekly VWAP length (e.g.,
approx. 30 bars/days for a week)

 # Breakout Parameters
 ('breakout_lookback', 7), # Lookback period for prior
high/low (e.g., highest/lowest of last 7 bars)
 ('adx_threshold', 20), # ADX > 20 for trend
confirmation
 ('adx_period', 14), # ADX calculation period

 # Volume and ATR Confirmation
 ('volume_multiplier', 1.2), # Volume > 1.2x average
(e.g., 1.2 for 10% above average)
 ('volume_period', 7), # Volume average period
 ('atr_period', 7), # ATR period
 ('atr_expansion_threshold', 1.5), # ATR expansion threshold
(e.g., 1.5 for 50% higher than average ATR)
 ('atr_expansion_period', 7), # Period to compare ATR
expansion

 # Trailing Stop Parameters
 ('trailing_stop_atr_multiplier', 2.0), # Trailing stop
distance (e.g., 2 * ATR from highest/lowest point)
 ('initial_stop_atr_multiplier', 3.), # Initial stop loss
(e.g., 3 * ATR from entry)

 # Risk Management
 ('position_size_pct', 0.95), # Position size percentage
)

 vwap_session_length, vwap_weekly_length: Periods for calculating
session-based and longer-term (weekly) Volume Weighted Average
Prices. VWAP acts as a dynamic average price, weighted by volume.

 breakout_lookback: The number of bars to look back for the highest
high or lowest low to define the breakout levels.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 74

 adx_threshold, adx_period: Parameters for the Average Directional
Index (ADX), used to confirm the strength of the trend following a
breakout.

 volume_multiplier, volume_period: Parameters for a Simple Moving
Average of volume. Current volume must exceed this average by the
volume_multiplier for breakout confirmation.

 atr_period, atr_expansion_threshold, atr_expansion_period:
Parameters for Average True Range (ATR). atr_expansion_threshold
checks if current ATR is significantly higher than its recent average,
indicating increasing volatility confirming the breakout.

 trailing_stop_atr_multiplier, initial_stop_atr_multiplier:
Multipliers for ATR to set the trailing stop distance and the initial stop
loss distance respectively.

 position_size_pct: The percentage of available capital to allocate to
a trade.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: # If an order is pending, return.
 return

 # Skip if not enough data for all indicators to be calculated
 required_data = max(
 self.params.breakout_lookback,
 self.params.vwap_session_length,
 self.params.adx_period,
 self.params.atr_period
)

 if len(self.dataclose) < required_data:
 return

 current_price = self.dataclose[0]

 # --- Handle existing positions ---
 if self.position:
 self.update_trailing_stop() # Always update trailing stop

 # Check exit conditions for the current position
 should_exit, exit_reason = self.check_exit_conditions()
 if should_exit:
 self.order = self.close() # Close the position
 # Reset tracking variables after closing a position
 self.entry_price = None
 self.stop_price = None

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 75

 self.trail_price = None
 self.position_type = None
 self.breakout_confirmed = False
 return # Exit this bar's logic

 # --- Look for breakout setup if not in position ---
 if not self.position:
 breakout_valid, direction =
self.check_breakout_conditions() # Check all complex entry
conditions

 if breakout_valid and direction: # If a valid breakout is
detected
 atr_value = self.atr[0] # Get current ATR

 if direction == "LONG": # If it's a bullish breakout
 # Calculate initial and trailing stop prices
based on current price and ATR
 self.stop_price = current_price -
(self.params.initial_stop_atr_multiplier * atr_value)
 self.trail_price = current_price -
(self.params.trailing_stop_atr_multiplier * atr_value)

 self.order = self.buy() # Place buy order
 self.entry_price = current_price # Record entry
details
 self.position_type = 1 # Mark as long position
 self.breakout_confirmed = True # Confirm breakout
for tracking

 elif direction == "SHORT": # If it's a bearish
breakout
 # Calculate initial and trailing stop prices
based on current price and ATR
 self.stop_price = current_price +
(self.params.initial_stop_atr_multiplier * atr_value)
 self.trail_price = current_price +
(self.params.trailing_stop_atr_multiplier * atr_value)

 self.order = self.sell() # Place sell order
 self.entry_price = current_price # Record entry
details
 self.position_type = -1 # Mark as short position
 self.breakout_confirmed = True # Confirm breakout
for tracking

 Order and Data Check: The method starts by checking for any
pending orders and ensuring enough historical data is available for all
required indicators (required_data).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 76

 Position Management (If in Position): If the strategy has an open
position, it first calls self.update_trailing_stop() to adjust the
trailing stop. Then, self.check_exit_conditions() is called. If any
exit condition (initial stop, trailing stop, or VWAP mean reversion) is
met, the position is closed, and all associated tracking variables are
reset.

 Entry Logic (No Position): If no position is open:
 breakout_valid, direction =

self.check_breakout_conditions(): This crucial call
evaluates all the complex entry filters: prior high/low breakout,
VWAP alignment, ADX trend strength, volume confirmation,
and ATR expansion. It returns True and the direction (“LONG”
or “SHORT”) if all conditions are met.

 If a breakout_valid signal is detected, the strategy calculates
initial and trailing stop prices based on the current ATR.

 A buy() order is placed for a “LONG” breakout, and a sell()
order for a “SHORT” breakout. Entry details (entry_price,
position_type) are recorded.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 77

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 78

4. Volatility Compression / Breakout Strategies

Designed to detect periods of low volatility (consolidation) and enter trades during sudden
breakouts, often using indicators like Bollinger Bands, ROC, or statistical bands to
anticipate explosive moves.

Bollinger Band Squeeze Strategy
 Logic and Idea: This strategy identifies periods of low volatility (a “squeeze”) using

Bollinger Bands. When the bands contract, it suggests that the market is
consolidating before a significant price move. The strategy then waits for a
“breakout,” where the price closes outside the bands, indicating the start of a new
trend. A trailing stop is used to manage risk and lock in profits as the trend
progresses.

 Main Parts of the Strategy Class Code (BollingerBandSqueezeStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('bband_period', 7),
 ('bband_devfactor', 1.0),
 ('squeeze_period', 14),
 ('trail_percent', 0.02), # Trailing stop loss percentage
(e.g., 2%)
)

 bband_period: The number of bars used for calculating the Bollinger
Bands.

 bband_devfactor: The standard deviation multiplier for setting the
upper and lower Bollinger Bands. A smaller factor makes the bands
tighter.

 squeeze_period: The lookback period used to identify the lowest
Bollinger Bandwidth, indicating a volatility squeeze.

 trail_percent: The percentage used to calculate the trailing stop-
loss from the high/low of the trade.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Check for pending orders and sufficient data
 if self.order or len(self) < self.p.squeeze_period:
 return

 # Check if a squeeze is happening by comparing the current
bandwidth to its historic low
 is_squeeze = self.lowest_bb_width[-1] == ((self.bband.top[-1]

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 79

- self.bband.bot[-1]) / self.bband.mid[-1])

 # Only enter if not already in a position
 if not self.position:
 if is_squeeze:
 # Breakout to the upside
 if self.dataclose[0] > self.bband.top[0]:
 self.order = self.buy()
 # Breakout to the downside
 elif self.dataclose[0] < self.bband.bot[0]:
 self.order = self.sell()

 Order and Data Check: The method first checks if there’s any
pending order (self.order) to avoid placing multiple orders, and
ensures enough historical data is available (len(self) <
self.p.squeeze_period) for indicator calculations.

 Squeeze Detection: is_squeeze is a boolean that evaluates if the
current Bollinger Bandwidth is equal to its lowest value over the
defined squeeze_period. This condition signals that price volatility
has contracted significantly.

 Entry Conditions: If a squeeze is detected (is_squeeze is True) and
there is no open position (not self.position):

 Long Entry: If the current closing price (self.dataclose[0])
breaks above the upper Bollinger Band (self.bband.top[0]), a
buy() order is placed, signaling an upside breakout.

 Short Entry: If the current closing price (self.dataclose[0])
breaks below the lower Bollinger Band (self.bband.bot[0]), a
sell() order is placed, signaling a downside breakout.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 80

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 81

Momentum Ignition Strategy
 Logic and Idea: This strategy aims to capture significant price movements that

occur after periods of low volatility (consolidation) followed by a “momentum
ignition” event. It uses standard deviation of price to identify consolidation, Rate
of Change (ROC) for a statistical momentum breakout, and a Simple Moving
Average (SMA) for overall trend filtering. Risk is managed with an ATR-based
trailing stop.

 Main Parts of the Strategy Class Code (MomentumIgnitionStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # Volatility Filter
 ('consolidation_period', 30),
 ('consolidation_threshold', 0.05), # Max StdDev as % of price
 # Momentum Breakout
 ('roc_period', 7),
 ('roc_ma_period', 30),
 ('roc_breakout_std', 1.0), # ROC must exceed N StdDevs of its
MA
 # Trend Filter
 ('trend_period', 30),
 # Risk Management
 ('atr_period', 7),

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 82

 ('atr_stop_multiplier', 3.0),
)

 consolidation_period: The period over which the standard deviation
of price is calculated to identify consolidation phases.

 consolidation_threshold: The maximum allowable standard
deviation (as a percentage of the current price) for the market to be
considered in a “consolidating” state. Lower values mean tighter
consolidation.

 roc_period: The period for calculating the Rate of Change (ROC)
indicator, which measures momentum.

 roc_ma_period: The period for calculating both a Simple Moving
Average (SMA) and a Standard Deviation of the ROC indicator itself.
These are used to identify statistically significant breakouts in
momentum.

 roc_breakout_std: The number of standard deviations the current
ROC must exceed from its roc_ma to signal a “momentum ignition”
breakout.

 trend_period: The period for the Simple Moving Average used as a
macro (long-term) trend filter.

 atr_period: The period for calculating the Average True Range (ATR),
used to set the initial and trailing stop-loss distances.

 atr_stop_multiplier: A multiplier applied to the ATR value to
determine the stop-loss distance.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: return # Exit if a previous order is still
pending execution.

 if not self.position: # Logic when not currently in a trade.
 # --- Filter Conditions ---
 # 1. Is the market consolidating (low price volatility)?
 is_consolidating = (self.price_stddev[0] /
self.data.close[0]) < self.p.consolidation_threshold

 # 2. Is the macro trend aligned?
 is_macro_uptrend = self.data.close[0] > self.trend_sma[0]
 is_macro_downtrend = self.data.close[0] <
self.trend_sma[0]

 if is_consolidating: # Only proceed if the market is
consolidating.
 # 3. Has momentum "ignited" with a statistical

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 83

breakout?
 # Calculate upper and lower bands for ROC based on
its MA and StdDev.
 roc_upper_band = self.roc_ma[0] + (self.roc_stddev[0]
* self.p.roc_breakout_std)
 roc_lower_band = self.roc_ma[0] - (self.roc_stddev[0]
* self.p.roc_breakout_std)

 # Check if current ROC breaks these bands.
 is_mom_breakout_up = self.roc[0] > roc_upper_band
 is_mom_breakout_down = self.roc[0] < roc_lower_band

 # --- Entry Logic ---
 # Buy if macro trend is up AND momentum breaks out
upwards.
 if is_macro_uptrend and is_mom_breakout_up:
 self.order = self.buy()
 # Sell if macro trend is down AND momentum breaks out
downwards.
 elif is_macro_downtrend and is_mom_breakout_down:
 self.order = self.sell()

 elif self.position: # Logic when currently in a trade.
 # --- Manual ATR Trailing Stop Logic ---
 if self.position.size > 0: # If long position
 # Update highest price reached since entry.
 self.highest_price_since_entry =
max(self.highest_price_since_entry, self.data.high[0])
 # Calculate new potential stop price.
 new_stop = self.highest_price_since_entry -
(self.atr[0] * self.p.atr_stop_multiplier)
 # Update stop price, ensuring it only moves in the
direction of profit (up for long).
 self.stop_price = max(self.stop_price, new_stop)
 # Close position if price falls below the trailing
stop.
 if self.data.close[0] < self.stop_price: self.order =
self.close()
 elif self.position.size < 0: # If short position
 # Update lowest price reached since entry.
 self.lowest_price_since_entry =
min(self.lowest_price_since_entry, self.data.low[0])
 # Calculate new potential stop price.
 new_stop = self.lowest_price_since_entry +
(self.atr[0] * self.p.atr_stop_multiplier)
 # Update stop price, ensuring it only moves in the
direction of profit (down for short).
 self.stop_price = min(self.stop_price, new_stop)
 # Close position if price rises above the trailing

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 84

stop.
 if self.data.close[0] > self.stop_price: self.order =
self.close()

 Order Check: The method starts by checking if there’s a pending
order. If so, it returns to avoid placing duplicate orders.

 Filter Conditions (No Position): If the strategy is not currently in a
trade:

 Consolidation Check (is_consolidating): It checks if the
current price_stddev (standard deviation of the closing price)
normalized by the data.close[0] is below the
consolidation_threshold. This identifies periods of low
volatility.

 Macro Trend Alignment: It checks if the current
data.close[0] is above (is_macro_uptrend) or below
(is_macro_downtrend) the trend_sma. This ensures trades are
only taken in the direction of the broader trend.

 Momentum Breakout Detection: If the market is indeed
consolidating, it calculates upper and lower bands for the roc
indicator based on its roc_ma and roc_stddev.
is_mom_breakout_up (or is_mom_breakout_down) becomes
true if the current roc breaks above (or below) these
statistically significant bands, indicating a sudden surge in
momentum.

 Entry Logic (No Position): A buy() order is placed if the market is
consolidating, in an uptrend, and experiences an upward momentum
breakout. A sell() order is placed if consolidating, in a downtrend,
and experiences a downward momentum breakout.

 Trailing Stop Logic (In Position): If the strategy is in a long position, it
continuously updates self.highest_price_since_entry and moves
the self.stop_price upwards, trailing the price at a distance
determined by atr and atr_stop_multiplier. If the price falls below
this trailing stop, the position is closed. A similar logic applies for
short positions, updating self.lowest_price_since_entry and
moving the stop downwards.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 85

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 86

Simple Volatility Momentum Strategy
 Logic and Idea: This strategy operates on the principle that when volatility

accelerates, the price tends to move strongly in its current direction. It identifies
“volatility momentum” by comparing the current volatility (standard deviation of
returns) to its value a few periods ago. If volatility is increasing and the price is
above/below a Simple Moving Average (SMA) for trend confirmation, a trade is
initiated in the direction of the price trend. ATR-based stop-losses are used for risk
management, and positions are also exited if volatility momentum ceases.

 Main Parts of the Strategy Class Code (SimpleVolatilityMomentumStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('vol_window', 30), # Volatility calculation period
(for std dev of returns)
 ('vol_momentum_window', 7), # Vol momentum lookback
(difference between current vol and N bars ago)
 ('price_sma_window', 30), # Price trend SMA
 ('atr_window', 14), # ATR stop loss period
 ('atr_multiplier', 5.0), # ATR stop multiplier
)

 vol_window: The period used for calculating price volatility (standard
deviation of returns).

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 87

 vol_momentum_window: The lookback period used to calculate
“volatility momentum” by comparing the current volatility to the
volatility N bars ago.

 price_sma_window: The period for the Simple Moving Average (SMA)
of the closing price, used to determine the general price trend.

 atr_window: The period for the Average True Range (ATR), used to
calculate the initial and trailing stop-loss distances.

 atr_multiplier: A multiplier applied to the ATR value to set the stop-
loss distance.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Need enough data for indicators to warm up
 if len(self) < 30: # Or max(self.params.vol_window, etc) for
robustness
 return

 # Current values of indicators
 vol_momentum = self.vol_momentum[0]
 current_price = self.data.close[0]
 sma_price = self.price_sma[0]

 # --- Check Stop Loss (highest priority) ---
 if self.position: # If currently in a position
 if self.position.size > 0 and current_price <=
self.stop_price: # Long position hit stop
 self.close() # Close the position
 self.log(f'STOP LOSS - Long closed at
{current_price:.2f}')
 return # Exit this bar's logic
 elif self.position.size < 0 and current_price >=
self.stop_price: # Short position hit stop
 self.close() # Close the position
 self.log(f'STOP LOSS - Short closed at
{current_price:.2f}')
 return # Exit this bar's logic

 # --- Exit if volatility stops accelerating (if already in
trade) ---
 if self.position and vol_momentum <= 0: # If in a position
and vol momentum is non-positive
 self.close() # Close the position
 self.log(f'VOL MOMENTUM EXIT - Vol momentum:
{vol_momentum:.6f}')
 return # Exit this bar's logic

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 88

 # --- Entry signals: Vol accelerating + price direction (if
no position) ---
 if not self.position and vol_momentum > 0: # If no position
and volatility is accelerating

 # Long: Vol accelerating + price above SMA
 if current_price > sma_price: # Price is above SMA
(uptrend)
 self.buy() # Place a buy order
 # Calculate and set initial stop price
 self.stop_price = current_price - (self.atr[0] *
self.params.atr_multiplier)
 self.trade_count += 1 # Increment trade counter
 self.log(f'LONG - Price: {current_price:.2f}, Vol
Mom: {vol_momentum:.6f}, Stop: {self.stop_price:.2f}')

 # Short: Vol accelerating + price below SMA
 elif current_price < sma_price: # Price is below SMA
(downtrend)
 self.sell() # Place a sell order
 # Calculate and set initial stop price
 self.stop_price = current_price + (self.atr[0] *
self.params.atr_multiplier)
 self.trade_count += 1 # Increment trade counter
 self.log(f'SHORT - Price: {current_price:.2f}, Vol
Mom: {vol_momentum:.6f}, Stop: {self.stop_price:.2f}')

 # --- Update trailing stops (if in position) ---
 if self.position: # If already in a position
 if self.position.size > 0: # Long position
 new_stop = current_price - (self.atr[0] *
self.params.atr_multiplier) # Calculate new potential stop
 if new_stop > self.stop_price: # If new stop is
higher, update it (trailing)
 self.stop_price = new_stop

 elif self.position.size < 0: # Short position
 new_stop = current_price + (self.atr[0] *
self.params.atr_multiplier) # Calculate new potential stop
 if new_stop < self.stop_price: # If new stop is
lower, update it (trailing)
 self.stop_price = new_stop

 Data Sufficiency and Initial Checks: The method first checks if
enough historical data is available for indicator calculations.

 Stop Loss Check (Highest Priority): If an open position exists, it first
checks if the current price has hit the self.stop_price. If so, the
position is closed, and the method returns.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 89

 Volatility Momentum Exit (If in Position): If the strategy is in a
position, it also checks if vol_momentum[0] is no longer positive (i.e.,
volatility has stopped accelerating or is decelerating). If this condition
is met, the position is closed to avoid holding a trade when
momentum dissipates.

 Entry Signals (No Position): If no position is open and
vol_momentum[0] is greater than 0 (volatility is accelerating):

 Long Entry: A buy() order is placed if the current_price is
above the sma_price (indicating an uptrend). An initial
self.stop_price is set using the ATR.

 Short Entry: A sell() order is placed if the current_price is
below the sma_price (indicating a downtrend). An initial
self.stop_price is set using the ATR.

 Trailing Stop Update (If in Position): If the strategy is in an open
position, the self.stop_price is continuously updated to trail the
current price, moving upwards for long positions and downwards for
short positions, ensuring profits are protected as the trade moves
favorably.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 90

Statistically Validated Regression Channel Breakout Strategy
 Logic and Idea: This strategy trades breakouts from a Linear Regression Channel,

but with a crucial “statistical validation” step. It doesn’t just enter on any channel
breakout; it requires the breakout candle to have an unusually large bar range (High

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 91

- Low) and high volume, both exceeding a statistically significant threshold (e.g.,
average + N standard deviations). This aims to confirm that the breakout is strong
and genuine, reducing false signals. A fixed percentage stop-loss is used, and
positions are also exited if the price crosses back over the channel’s midline (mean
reversion exit).

 Main Parts of the Strategy Class Code (StatValidatedRegChannelBreakout):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('channel_period', 30), # Lookback for regression channel
(for linear regression and standard deviation)
 ('channel_mult', 1.), # Std Dev multiplier for channel
width (how wide bands are from midline)
 ('valid_period', 7), # Lookback for range/volume
validation statistics (avg and std dev)
 ('valid_mult', 1.2), # Std Dev multiplier for
range/volume validation (how many std dev above avg for
validation)
 ('stop_loss_perc', 0.05), # Stop loss percentage (e.g., 0.03
= 3%)
 ('printlog', False),
)

 channel_period: The lookback period for calculating the Linear
Regression Channel (midline, upper, and lower bands).

 channel_mult: A multiplier applied to the standard deviation of price
to determine the width of the channel bands around the midline.

 valid_period: The lookback period for calculating the average and
standard deviation of the bar range (High - Low) and volume. These
statistics are used for the “statistical validation” of a breakout.

 valid_mult: A multiplier applied to the standard deviation of range
and volume. The current bar’s range and volume must exceed their
respective averages plus this multiple of their standard deviation to
be considered “validated.”

 stop_loss_perc: A fixed percentage from the entry price used to set a
static stop-loss order.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Check if an order is pending or if we cannot calculate
indicators yet (e.g., not enough data points)
 if self.order or not
math.isfinite(self.regchannel.lines.upper[0]) or \
 not math.isfinite(self.avg_range[0]) or not

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 92

math.isfinite(self.std_range[0]) or \
 not math.isfinite(self.avg_volume[0]) or not
math.isfinite(self.std_volume[0]):
 return

 current_range = self.bar_range[0] # Current bar's High - Low
 current_volume = self.datavolume[0] # Current bar's volume

 # Define validation thresholds: average + (valid_mult * std
dev)
 range_threshold = self.avg_range[0] + self.p.valid_mult *
self.std_range[0]
 volume_threshold = self.avg_volume[0] + self.p.valid_mult *
self.std_volume[0]

 # Check if standard deviations are too low (near zero) to
avoid division by zero or nonsensical validation
 min_std_dev_threshold = 1e-9
 if self.std_range[0] < min_std_dev_threshold or
self.std_volume[0] < min_std_dev_threshold:
 is_validated = False # Cannot validate if std dev is
essentially zero
 self.log(f"WARN: Range or Volume StdDev too low
({self.std_range[0]:.2f}, {self.std_volume[0]:.2f}). Skipping
validation.", dt=self.datas[0].datetime.date(0))
 else:
 # A breakout is validated if both current range AND
current volume exceed their respective thresholds.
 is_validated = (current_range > range_threshold and
current_volume > volume_threshold)

 # --- Entry Logic ---
 if not self.position: # If no position is open
 # Check for Long Breakout: current close is above the
upper channel band
 if self.dataclose[0] > self.regchannel.lines.upper[0]:
 self.log(f'Potential LONG Breakout:
Close={self.dataclose[0]:.2f} >
Upper={self.regchannel.lines.upper[0]:.2f}')
 if is_validated: # If breakout is statistically
validated
 self.log(f'--> VALIDATED:
Range={current_range:.2f} > Thr={range_threshold:.2f},
Vol={current_volume:.0f} > Thr={volume_threshold:.0f}')
 self.log(f'>>> Placing BUY Order')
 if self.stop_order: self.cancel(self.stop_order)
Cancel any existing stop
 self.order = self.buy() # Place buy order
 else:

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 93

 self.log(f'--> NOT Validated:
Range={current_range:.2f} <= Thr={range_threshold:.2f} or
Vol={current_volume:.0f} <= Thr={volume_threshold:.0f}')

 # Check for Short Breakout: current close is below the
lower channel band
 elif self.dataclose[0] < self.regchannel.lines.lower[0]:
 self.log(f'Potential SHORT Breakout:
Close={self.dataclose[0]:.2f} <
Lower={self.regchannel.lines.lower[0]:.2f}')
 if is_validated: # If breakout is statistically
validated
 self.log(f'--> VALIDATED:
Range={current_range:.2f} > Thr={range_threshold:.2f},
Vol={current_volume:.0f} > Thr={volume_threshold:.0f}')
 self.log(f'>>> Placing SELL Order')
 if self.stop_order: self.cancel(self.stop_order)
Cancel any existing stop
 self.order = self.sell() # Place sell order
 else:
 self.log(f'--> NOT Validated:
Range={current_range:.2f} <= Thr={range_threshold:.2f} or
Vol={current_volume:.0f} <= Thr={volume_threshold:.0f}')

 # --- Exit Logic (if in position) ---
 else: # If a position is open
 # Exit long position if price crosses back below the
midline (mean reversion)
 if self.position.size > 0 and self.dataclose[0] <
self.regchannel.lines.midline[0]:
 self.log(f'Midline CLOSE LONG SIGNAL: Close
{self.dataclose[0]:.2f} < Midline
{self.regchannel.lines.midline[0]:.2f}')
 if self.stop_order: # Cancel existing stop loss
first
 self.log(f'Cancelling Stop Order Ref:
{self.stop_order.ref} before closing.')
 self.cancel(self.stop_order)
 self.stop_order = None
 self.order = self.close() # Place the close order
 # Exit short position if price crosses back above the
midline (mean reversion)
 elif self.position.size < 0 and self.dataclose[0] >
self.regchannel.lines.midline[0]:
 self.log(f'Midline CLOSE SHORT SIGNAL: Close
{self.dataclose[0]:.2f} > Midline
{self.regchannel.lines.midline[0]:.2f}')
 if self.stop_order: # Cancel existing stop loss
first
 self.log(f'Cancelling Stop Order Ref:

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 94

{self.stop_order.ref} before closing.')
 self.cancel(self.stop_order)
 self.stop_order = None
 self.order = self.close() # Place the close order

 Initialization Checks: The method begins by ensuring no orders are
pending and that all necessary indicator values (from regchannel,
avg_range, std_range, avg_volume, std_volume) are finite and
available. It also logs a warning if standard deviations are too low,
which can indicate insufficient data for validation.

 Validation Thresholds: range_threshold and volume_threshold are
calculated. These represent a dynamic bar range and volume level
that, if exceeded, indicate a statistically significant move. They are
derived from the average and standard deviation of historical range
and volume, multiplied by valid_mult.

 Statistical Validation (is_validated): This boolean is True only if the
current_range of the bar and its current_volume both exceed their
respective calculated thresholds. This is the core filtering mechanism
to confirm genuine breakouts.

 Entry Logic (No Position): If no position is open:
 Long Breakout: If the current dataclose[0] breaks above the

regchannel.lines.upper[0] AND is_validated is true, a
buy() order is placed.

 Short Breakout: If the current dataclose[0] breaks below the
regchannel.lines.lower[0] AND is_validated is true, a
sell() order is placed. Any existing self.stop_order is
canceled before placing the new entry.

 Exit Logic (In Position): If the strategy is in an open position:
 Mean Reversion Exit: If a long position is open and

dataclose[0] falls below regchannel.lines.midline[0], or if
a short position is open and dataclose[0] rises above
regchannel.lines.midline[0], the position is closed. This
acts as a profit-taking or loss-cutting mechanism if the initial
breakout fails to sustain and the price reverts to the channel’s
mean. Any active stop loss is canceled before this manual
close.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 95

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 96

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 97

5. Advanced and Hybrid Strategies

Combine elements from different categories (e.g., trend-following with mean-reversion) or
incorporate more complex techniques like machine learning, regime switching, or Kalman
filtering to adapt dynamically to market conditions.

Kalman Filter Trend Strategy
 Logic and Idea: This advanced strategy uses a Kalman Filter, a powerful algorithm

for estimating the state of a dynamic system from noisy measurements. In trading,
it can be used to estimate the “true” price and its velocity (trend) by filtering out
market noise. The strategy generates signals based on the estimated velocity: a
positive velocity indicates an uptrend, and a negative velocity indicates a
downtrend. A trailing stop is used for risk management.

 Main Parts of the Strategy Class Code (KalmanFilterTrendWithTrail):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('process_noise', 1e-3), # Controls the uncertainty in the
model's prediction of the system's state.
 ('measurement_noise', 1e-1), # Controls the uncertainty in
the actual price measurement.
 ('trail_percent', 0.02), # Percentage for the trailing stop-
loss.
)

 process_noise: A parameter influencing the Kalman Filter’s Q matrix,
which represents the uncertainty in the system’s process model (how
the underlying price and velocity are assumed to evolve). A higher
value makes the filter more responsive to changes but potentially
more noisy.

 measurement_noise: A parameter influencing the Kalman Filter’s R
matrix, representing the uncertainty in the actual price measurement.
A higher value makes the filter smoother but less responsive to
current price.

 trail_percent: The percentage used to calculate the trailing stop-
loss from the high/low of the trade, applied once an entry is
completed.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: # If there's an existing order pending, do
nothing
 return

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 98

 if len(self.kf_velocity) == 0: # Ensure Kalman Filter has
calculated values
 return

 estimated_velocity = self.kf_velocity[0] # Get the current
estimated velocity
 current_position_size = self.position.size

 if current_position_size == 0: # If not currently in a
position
 if self.stop_order: # If there's a lingering stop order
(e.g., from a previous manual close), cancel it
 self.cancel(self.stop_order)
 self.stop_order = None

 if estimated_velocity > 0: # If velocity is positive
(uptrend)
 self.order = self.buy() # Place a buy order
 elif estimated_velocity < 0: # If velocity is negative
(downtrend)
 self.order = self.sell() # Place a sell order

 Order and Data Check: The method first checks if self.order is
pending and ensures that the Kalman Filter’s kf_velocity line has
been populated with data.

 Velocity Retrieval: It retrieves the estimated_velocity from the
kf_velocity line of the custom KalmanFilterIndicator. This
velocity is the core signal from the Kalman Filter, indicating the
estimated trend direction.

 Entry Logic (No Position): If the strategy is not currently in a position
(current_position_size == 0):

 Any existing self.stop_order is canceled (this handles
scenarios where a stop order might remain after a manual
closing of a position).

 If estimated_velocity is greater than 0, indicating an upward
trend, a buy() order is placed.

 If estimated_velocity is less than 0, indicating a downward
trend, a sell() order is placed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 99

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 100

OBV Momentum Strategy
 Logic and Idea: This strategy combines On-Balance Volume (OBV) with other

filters to identify momentum-driven trades. OBV is a cumulative indicator that
relates volume to price changes: rising OBV suggests buying pressure, falling OBV
suggests selling pressure. The strategy looks for OBV crossovers with its own
Moving Average (MA) as the primary signal, but filters these signals with RSI (to
avoid overbought/oversold conditions) and a volume average (to ensure significant
volume accompanies the move). A trailing stop is used for risk management.

 Main Parts of the Strategy Class Code (OBVmomentumStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('obv_ma_period', 30),
 ('trail_percent', 0.02),
 ('rsi_period', 14),
 ('volume_ma_period', 7),
)

 obv_ma_period: The period for the Simple Moving Average (SMA)
applied to the OBV line. The crossover of OBV with its MA is a primary
signal.

 trail_percent: The percentage used for the trailing stop-loss order
once a position is entered.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 101

 rsi_period: The period for the Relative Strength Index (RSI), used as
an oscillator to filter out overbought or oversold conditions.

 volume_ma_period: The period for a Simple Moving Average (SMA) of
the trading volume, used to confirm that momentum signals are
accompanied by significant trading activity.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 if self.order: # Check if there is already a pending order
 return

 if not self.position: # Logic when not currently in a trade
 # Long signal: OBV crosses up + RSI not overbought +
volume above average
 if (self.obv_cross[0] > 0.0 and # OBV crosses above its
MA (bullish cross)
 self.rsi[0] < 70 and # RSI is not in overbought
territory (below 70)
 self.data.volume[0] > self.volume_ma[0]): # Current
volume is above its moving average
 self.order = self.buy() # Place a buy order

 # Short signal: OBV crosses down + RSI not oversold +
volume above average
 elif (self.obv_cross[0] < 0.0 and # OBV crosses below its
MA (bearish cross)
 self.rsi[0] > 30 and # RSI is not in oversold
territory (above 30)
 self.data.volume[0] > self.volume_ma[0]): # Current
volume is above its moving average
 self.order = self.sell() # Place a sell order

 Order Check: The method begins by checking if self.order is not
None, meaning an order is currently pending. If so, it returns to prevent
placing duplicate orders.

 Entry Logic (No Position): If the strategy is not holding any open
position (not self.position):

 Long Signal: A buy() order is placed if three conditions are
met:

1. self.obv_cross[0] > 0.0: The OBV line has just
crossed above its moving average, indicating increasing
buying pressure.

2. self.rsi[0] < 70: The Relative Strength Index (RSI) is
below 70, meaning the asset is not currently

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 102

overbought, which helps to avoid entries at potential
reversals.

3. self.data.volume[0] > self.volume_ma[0]: The
current trading volume is greater than its moving
average, confirming that the price movement is
supported by significant market activity.

 Short Signal: A sell() order is placed if three analogous
conditions are met for a bearish signal:

1. self.obv_cross[0] < 0.0: The OBV line has just
crossed below its moving average, indicating increasing
selling pressure.

2. self.rsi[0] > 30: The RSI is above 30, meaning the
asset is not currently oversold, avoiding entries at
potential oversold bounces.

3. self.data.volume[0] > self.volume_ma[0]: The
current volume is above its moving average, confirming
the bearish move.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 103

RandomForest-Enhanced MA Ribbon Strategy
 Logic and Idea: This is a sophisticated hybrid strategy that enhances the MA Ribbon

Pullback Strategy by incorporating a Machine Learning model (Random Forest
Classifier) to filter trade signals. The Random Forest is trained on various technical
features derived from the MA ribbon and other indicators to predict future price

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 104

movements. A trade signal from the MA Ribbon is only acted upon if the Random
Forest model’s “confidence” (probability of a positive outcome) exceeds a certain
threshold. This aims to improve signal quality and reduce false positives. The model
is retrained periodically to adapt to changing market conditions.

 Main Parts of the Strategy Class Code
(RandomForestEnhancedMaRibbonStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 # EXACT original parameters inherited from
MaRibbonPullbackStrategy
 ('ema_periods', (5, 8, 11, 14, 17, 20)),
 ('slope_period', 7),
 ('exit_ema_cross_short', 7),
 ('exit_ema_cross_long', 30),
 ('order_percentage', 0.95),
 ('ticker', 'BTC-USD'),
 ('min_slope_threshold', 0.001),
 # RandomForest parameters only
 ('rf_threshold', 0.65), # RF confidence threshold for 3-
month data
 ('retrain_frequency', 25), # Retrain every 25 bars for 3-
month data
)

 ema_periods, slope_period, exit_ema_cross_short,
exit_ema_cross_long, order_percentage, min_slope_threshold:
These are parameters inherited from the base
MaRibbonPullbackStrategy, defining the MA ribbon and exit
conditions.

 rf_threshold: The minimum confidence (predicted probability of a
positive outcome) from the Random Forest model required for a trade
signal to be accepted.

 retrain_frequency: How often (in number of bars) the Random
Forest model is retrained on new data. This allows the model to adapt
to changing market conditions.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 # Collect features for RF training (minimal overhead)
 features = self.calculate_features() # Extract features from
indicators
 if features is not None and len(self.data) > 35: # Ensure
enough data and valid features
 target = self.calculate_target_label() # Determine the

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 105

target label for training
 self.feature_buffer.append(features) # Add features to
buffer
 self.label_buffer.append(target) # Add label to buffer

 # Keep buffer size manageable for memory/performance
 if len(self.feature_buffer) > 80:
 self.feature_buffer = self.feature_buffer[-60:]
 self.label_buffer = self.label_buffer[-60:]

 # Retrain RF frequently for dynamic markets
 if len(self.data) - self.last_retrain >=
self.params.retrain_frequency:
 if self.train_random_forest(): # Attempt to train the
model
 self.last_retrain = len(self.data) # Update last
retrain bar if successful

 # EXACT original data check for MA Ribbon indicators
 if len(self.data_close) < max(self.params.ema_periods) +
self.params.slope_period:
 return

 # EXACT original expansion state of MA Ribbon
 is_expanding_up = (self.ema_fastest[0] > self.ema_slowest[0]
and
 self.slowest_ema_slope[0] >
self.params.min_slope_threshold)

 # EXACT original pullback touch detection
 pullback_touch = self.data_low[0] <= self.ema_fastest[0]

 # --- Entry Logic (with RF enhancement) ---
 if not self.position: # If no position is open
 if is_expanding_up and pullback_touch: # If MA Ribbon
signal is present
 self.total_signals += 1 # Count all potential signals
 # RF ENHANCEMENT: Get confidence from Random Forest
 rf_confidence = self.get_rf_confidence(features) #
Get prediction probability

 # Enter trade ONLY if RF model is ready OR confidence
meets threshold
 if not self.rf_ready or rf_confidence >
self.params.rf_threshold:
 self.log(f'BUY SIGNAL (Pullback):
Close={self.data_close[0]:.2f}, Low={self.data_low[0]:.2f},
FastEMA={self.ema_fastest[0]:.2f},
Slope={self.slowest_ema_slope[0]:.3f}, RF: {rf_confidence:.3f}')

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 106

 cash = self.broker.get_cash()
 size = (cash * self.params.order_percentage) /
self.data_close[0]
 self.log(f'Calculating Buy Size: Cash={cash:.2f},
Close={self.data_close[0]:.2f},
Percentage={self.params.order_percentage}, Size={size:.6f}')
 self.order = self.buy(size=size)
 else:
 self.rf_filtered_signals += 1 # Count signals
filtered by RF
 self.log(f'PULLBACK signal filtered - RF
confidence {rf_confidence:.3f} < {self.params.rf_threshold}')

 # --- Exit Logic (EXACT original logic) ---
 else: # We are in a long position
 if self.exit_crossover < 0: # If bearish EMA crossover
occurs
 self.log(f'SELL SIGNAL (Exit - EMA Cross):
Close={self.data_close[0]:.2f}')
 self.order = self.close() # Close the position

 Data Collection and RF Training: On each bar, features are
calculated and appended to feature_buffer and label_buffer.
These buffers store historical data for the Random Forest. The buffers
are kept to a manageable size. The train_random_forest() method
is called periodically based on retrain_frequency to update the
model.

 MA Ribbon Signal: The method checks for the core MA Ribbon
conditions: is_expanding_up (ribbon fanning out) and
pullback_touch (price pulling back to the fastest EMA).

 Random Forest Enhancement (Entry Logic): If a potential MA Ribbon
signal is present, the strategy:

 Increments self.total_signals.
 Calls self.get_rf_confidence(features) to get the

predicted probability (confidence) from the Random Forest
model for a positive outcome.

 A buy() order is placed only if the rf_ready flag is true (model
is trained) OR the rf_confidence is greater than the
rf_threshold. This is the filtering step. If the signal is not
confirmed by the RF, self.rf_filtered_signals is
incremented.

 Exit Logic: The exit condition remains the same as the base MA
Ribbon strategy: closing the position if the faster exit EMA crosses
below the slower exit EMA.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 107

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 108

Rough Path Momentum Strategy
 Logic and Idea: This is a highly advanced strategy that applies concepts from

“rough path theory,” a branch of mathematics used to analyze and integrate paths
(like price series) that are not necessarily smooth. The core idea is to extract “path
signatures” – a sequence of iterated integrals that capture the geometric and
dynamic properties of a price path, including its momentum, volatility, and
correlation structure, in a more robust way than traditional indicators. The strategy
generates signals based on these momentum signatures and uses a trailing stop
for risk management. It also checks for “signature invariance” (stability) to confirm
genuine trends.

 Main Parts of the Strategy Class Code (RoughPathMomentumStrategy):

o params: This tuple defines the configurable parameters for the strategy.

 params = (
 ('signature_window', 30), # Window for path signature
calculation (number of past bars to consider)
 ('signature_depth', 3), # Signature truncation level
(level of iterated integrals to compute, typically 2 or 3)
 ('momentum_threshold', 0.1), # Momentum signature threshold
(absolute value for entry)
 ('trailing_stop_pct', 0.05), # Percentage for the trailing
stop-loss
)

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 109

 signature_window: The number of recent price return increments to
use when calculating the path signature. This defines the “path”
being analyzed.

 signature_depth: The truncation level for the path signature
calculation. Higher depths capture more complex geometric
information about the path, but are computationally intensive. A
depth of 2 or 3 is common.

 momentum_threshold: An absolute threshold for the
momentum_signature. The momentum_signature must exceed this
value (either positively or negatively) to trigger an entry.

 trailing_stop_pct: The percentage used for the trailing stop-loss,
calculated from the highest/lowest price seen since entry.

o next(self): This method contains the main trading logic, executed on each
new bar of data.

 def next(self):
 self.update_trailing_stop() # Always update the trailing stop
if in a position

 if self.order is not None: # If a trade order is pending,
return.
 return

 # Store path increments (returns)
 if not np.isnan(self.returns[0]): # Ensure the current return
is not NaN
 self.path_increments.append(self.returns[0])

 # Keep only recent window for signature calculation
 if len(self.path_increments) > self.params.signature_window *
2: # Keep buffer slightly larger
 self.path_increments = self.path_increments[-
self.params.signature_window * 2:]

 # Skip if not enough data for signature calculation
 if len(self.path_increments) < self.params.signature_window:
 return

 # Calculate momentum signature for the most recent path
 recent_path = self.path_increments[-
self.params.signature_window:]
 momentum_sig = self.extract_momentum_signature(recent_path)
 self.momentum_signature = momentum_sig # Store for
analysis/debug

 # Check signature invariance (stability) - to confirm genuine
trends

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 110

 is_stable = self.is_signature_invariant(recent_path)

 # Trading signals based on momentum signatures and stability
 if abs(momentum_sig) > self.params.momentum_threshold and
is_stable: # If momentum is strong AND path is stable

 # Strong positive momentum signature (bullish)
 if momentum_sig > self.params.momentum_threshold:
 if self.position.size < 0: # If currently short,
close it
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # If no position, go long
 self.order = self.buy()

 # Strong negative momentum signature (bearish)
 elif momentum_sig < -self.params.momentum_threshold:
 if self.position.size > 0: # If currently long,
close it
 if self.stop_order is not None:
self.cancel(self.stop_order)
 self.order = self.close()
 elif not self.position: # If no position, go short
 self.order = self.sell()

 Trailing Stop Update: The method calls
self.update_trailing_stop() on every bar to ensure the trailing
stop is adjusted if the price moves favorably.

 Path Data Collection: The current bar’s percentage return is
appended to self.path_increments. The buffer is trimmed to keep
only the most recent data required for signature calculations.

 Data Sufficiency Check: It returns if there aren’t enough increments
in the path_increments list to form a signature_window-sized path.

 Signature Calculation: recent_path is extracted, and
self.extract_momentum_signature(recent_path) is called to
compute the aggregated momentum signature from the rough path
integrals.

 Signature Invariance Check (is_stable):
self.is_signature_invariant(recent_path) is called to assess the
stability of the path’s underlying process. This acts as a filter to
ensure that the detected momentum is likely to persist.

 Trading Signals: If the absolute value of the momentum_sig exceeds
momentum_threshold AND the path is deemed is_stable:

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 111

 Long Entry: If momentum_sig is positive, and the strategy is
either short (which is then closed) or flat, a buy() order is
placed.

 Short Entry: If momentum_sig is negative, and the strategy is
either long (which is then closed) or flat, a sell() order is
placed. Any active stop order is canceled before a new entry is
placed or an opposing position is closed.

Profitable Bitcoin Trading Strategies: Trend, Mean Reversion & Hybrid Models 112

